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Abstract. In this paper we consider the algorithm for recovering sparse orthogonal
polynomials using stochastic collocation via ℓq minimization. The main results include:
1) By using the norm inequality between ℓq and ℓ2 and the square root lifting inequali-
ty, we present several theoretical estimates regarding the recoverability for both sparse
and non-sparse signals via ℓq minimization; 2) We then combine this method with the
stochastic collocation to identify the coefficients of sparse orthogonal polynomial expan-
sions, stemming from the field of uncertainty quantification. We obtain recoverability
results for both sparse polynomial functions and general non-sparse functions. We also
present various numerical experiments to show the performance of the ℓq algorithm.
We first present some benchmark tests to demonstrate the ability of ℓq minimization
to recover exactly sparse signals, and then consider three classical analytical functions
to show the advantage of this method over the standard ℓ1 and reweighted ℓ1 mini-
mization. All the numerical results indicate that the ℓq method performs better than
standard ℓ1 and reweighted ℓ1 minimization.
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1. Introduction

In the field of uncertainty quantification (UQ), one of the main task is to quantify the
effect of uncertain model parameters on model output [14, 24, 26]. When the simulation
model is computationally expensive to run, we want to build a cheap surrogate of the
the response of the model output to variations in the model input. In this paper, we
consider the approximation of a function model f (z) : Rd → R (d ≥ 1) via a generalized
Polynomial Chaos Expansion (PCE), which consists of a polynomial basis whose elements
are orthogonal under the probability measure of the input variable z [27–29]. In particular,
we focus on identifying the PCE coefficients from small number of function samples, which
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means that the number of samples is (severely) less than the cardinality of the linear
approximation space.

Recently, based on the idea of compressive sensing [7, 10, 20], stochastic collocation
method via ℓ1-minimization techniques [11, 15, 17, 19, 21, 22, 30, 31] have been shown
to be an efficient method to recover the sparse PCE coefficients from the underdetermined
system. This is a natural approach to relax the original ℓ0 minimization problem and trying
to seek a sparse solution of the PCE vector.

Instead of ℓ1-minimization, noticing the fact that limq→0+ ‖c‖qq = ‖c‖0, the ℓq mini-
mization may provide a better approximation to the sparse solution. The advantage of
this approach can be found in [18] and it has been widely used to recover sparse solu-
tions [9, 13, 18]. The theoretical results in [25] give an interpretation to the intuitive
observation that ℓq minimization provides a better approximation to ℓ0 minimization than
that ℓ1 minimization can provide when the order of restricted isometry constants(RIC)
is greater than 2k. Numerical comparisons between ℓ1, ℓq minimization and other non-
convex methods, such as reweighted ℓ1 minimization, can be found in [13].

Based on the above observations, we will consider the stochastic collocation method
via ℓq minimization to approximate the sparse PCE coefficients. The main contribution of
this paper is that we establish some theroetical estimates for both exact recovery of sparse
signals and the recoverability for general non-sparse signals. Following the works in [3],
these estimates are obtained by using the key inequality between ℓ2 and ℓq norm developed
in [16]. The estimates are slightly different from the existing estimates of ℓq minimization
in [13, 16, 25] and references therein. Although these estimates are not able to verify the
improvement of the ℓq minimization over the ℓ1 minimization in terms of the RIC bound δs,
it is the foundation results to get the sparse recovery analysis for our bounded orthogonal
system. We apply the ℓq minimization to the stochastic collocation method and obtain the
sparse PCE coefficients for Legendre orthogonal polynomials. We present the recoverability
results for both sparse polynomial functions and general non-sparse functions based on the
new RIC bound estimates of the ℓq minimization. Various numerical results are presented
to show that the ℓq minimization make a significant improvement over ℓ1 minimization to
achieve sparse solutions, not only in low dimensions but also in high dimensions.

The rest of the paper is organized as follows. In Section 2, we introduce the generalized
polynomial chaos (gPC) approximation, set up the ℓ1 minimization and ℓq minimization
problems. Section 3 introduces some auxiliary results, presents the recoverability estimates
for both sparse signals and non-sparse signals via the ℓq minimization approach, gives
the theorems for recovering high-dimensional Legendre polynomial chaos. In Section 4,
some numerical experiments are provided to explore the performance and accuracy of
stochastic collocation via ℓq minimization comparing with ℓ1 minimization and reweighted
ℓ1 minimization. We finally give some conclusions in Section 5.

2. Problem setup

Let z = (z1, · · · , zd)T be a set of random vectors defined on the probability space
(Ω,F ,P) with d mutually independent components, where each z i takes values in Γi ⊂ R.


