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Abstract. This paper is devoted to the American option pricing problem governed by

the Black-Scholes equation. The existence of an optimal exercise policy makes the prob-

lem a free boundary value problem of a parabolic equation on an unbounded domain.

The optimal exercise boundary satisfies a nonlinear Volterra integral equation and is

solved by a high-order collocation method based on graded meshes. This free boundary

is then deformed to a fixed boundary by the front-fixing transformation. The boundary

condition at infinity (due to the fact that the underlying asset’s price could be arbitrar-

ily large in theory), is treated by the perfectly matched layer technique. Finally, the

resulting initial-boundary value problems for the option price and some of the Greeks

on a bounded rectangular space-time domain are solved by a finite element method. In

particular, for Delta, one of the Greeks, we propose a discontinuous Galerkin method to

treat the discontinuity in its initial condition. Convergence results for these two methods

are analyzed and several numerical simulations are provided to verify these theoretical

results.
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1. Introduction

European options allow the owner to exercise the option only on the specified expira-

tion dates, while American options can be exercised on or before the expiration dates. In

a celebrated paper, Black and Scholes [9] formulated a model (the Black-Scholes model)

that governs the option’s price over time, they also gave a closed-form solution for Eu-

ropean options. Unlike European options, there is no closed-form solution available for

American options. Kim [25] found that the American option pricing problem can be re-

garded as a European option plus an early exercise premium. Based on this idea, Carr,
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Jarrow and Myneni [12] reformulated this problem as a free boundary (optimal exercise

boundary) value problem, and they wrote down the solution in a form that depends on

the optimal exercise boundary, which, however, is hard to evaluate. In practise, there are

several known approximation formulas to the American option value, see [4, 23]. How-

ever, these results only hold for small or large, which are not applicable to moderate time

to expire. Therefore, numerical methods are highly involved in the evaluation of Amer-

ican options. The binomial method introduced by Cox, Ross, and Rubinstein [17] is a

simple and elegant method, and its convergence has been shown to be of order one in

the temporal direction by Amin and Khanna [3]. In [10, 22, 34], several finite difference

schemes were designed for pricing American options, while Han and Wu [19] introduced

a fast numerical method based on a nonlocal boundary condition for the same problem.

Some other developed numerical methods such as finite element method have also been

proposed for the Black-Scholes model, and we refer the reader to [20, 24, 26, 32, 36] and

references therein.

In the present paper, we concentrate on the evaluation of the price as well as the

Greeks for an American option. The Greeks, as important risk measures in practice, are

some certain partial derivatives of the option value with respect to different variables or

parameters. For the precise definitions of these Greeks, see Subsection 3.3. As we shall

see, there are two major difficulties in solving the American option problem due to the two

boundaries:

(i) The optimal exercise boundary. There exists an optimal exercise policy for the Amer-

ican option, which makes the problem under consideration to be a free boundary

value problem. This boundary satisfies a nonlinear Volterra integral equation, for

which it is not easy to get a good approximation of the solution.

(ii) The boundary at infinity. An asymptotic boundary condition is prescribed at infinity

due to the fact that the underlying stock price could be arbitrarily large in theory.

Since we cannot adopt numerical methods directly to the unbounded domain, how

to truncate the domain and to control the truncated error are key issues in designing

the numerical scheme.

The goal of this work is to solve the above two problems using the graded mesh collo-

cation method (for the former) and the perfectly matched layer technique (for the later),

and to propose a finite element method (FEM) as a numerical solver for the option value

and some of the Greeks. As to Delta, one of the Greeks, there is another problem due to

the discontinuity in its initial value, and we adopt a discontinuous Galerkin (DG) method

to treat this problem. Previous works on computing American option price using finite

element and finite difference methods could be found in [19, 20]. Holmes and Yang [20]

also provided a method for computing the Delta via a numerical evaluation of an integral.

The problem (i) is well studied in the existing literature. Cox et al. [17] showed that

the optimal exercise boundary satisfies a nonlinear Volterra integral equation, and Ma et al.

[31] used a high-order collocation method to solve this integral equation. We shall adopt

the treatment in [31] to solve the free boundary, and then use the front-fixing technique

in [20] to transform the curved boundary to a fixed line.


