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Abstract. The primal-dual hybrid gradient method is a classic way to tackle saddle-
point problems. However, its convergence is not guaranteed in general. Some restric-
tions on the step size parameters, e.g., τσ ≤ 1/‖AT A‖, are imposed to guarantee the
convergence. In this paper, a new convergent method with no restriction on parame-
ters is proposed. Hence the expensive calculation of ‖AT A‖ is avoided. This method
produces a predictor like other primal-dual methods but in a parallel fashion, which
has the potential to speed up the method. This new iterate is then updated by a sim-
ple correction to guarantee the convergence. Moreover, the parameters are adjusted
dynamically to enhance the efficiency as well as the robustness of the method. The
generated sequence monotonically converges to the solution set. A worst-case O (1/t)
convergence rate in ergodic sense is also established under mild assumptions. The nu-
merical efficiency of the proposed method is verified by applications in LASSO problem
and Steiner tree problem.
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1. Introduction

This paper is concerned about solving the following saddle-point problem:

min
x∈X

max
y∈Y

g(x)+ yT Ax − f ∗(y), (1.1)

where A ∈ ℜm×n, X ⊂ ℜn, Y ⊂ ℜm are closed convex sets, g, f ∗ are convex functions
and f ∗ is the conjugate function of a convex function f , f ∗(x) = supx∈domf

�

yT x− f (x)
�

.
Note that this saddle-point problem is a primal-dual formulation of the nonlinear primal
problem

min
x∈X

g(x)+ f (Ax). (1.2)
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The formulation (1.1) has a wide range of applications including image denoising [6,24],
statistical learning [21], compressive sensing [9] etc.

In many problems of practical interest, g and f ∗ do not share common properties,
making it difficult to derive numerical schemes for (1.1) that address both terms simul-
taneously. Fortunately, it frequently occurs in practice that efficient algorithms exist for
minimizing g and f ∗ separately. The primal-dual hybrid gradient (PDHG) method was
first mentioned in [24] to tackle total variation (TV) minimization problems. This method
removes the coupling between g and f ∗, enabling each term to be addressed separately.
Because it decouples g and f ∗, the steps of PDHG can often be written explicitly, as op-
posed to other splitting methods that require expensive minimization sub-problems. As a
result PDHG shows high numerical efficiency when applied to total variation (TV) mini-
mization problems. However the convergence of PDHG is highly dependent on the choice
of parameters. In [4], Chambolle and Pock’s (CP) method improved PDHG method by a
change on dual variable update. Their method is convergent and numerically competitive.
CP method was further studied by He and Yuan in [12] . They explained the method from
the aspect of Proximal Point Algorithm (PPA) and a relaxation factor was also introduced to
PPA scheme to accelerate the convergence. More recently, Goldstein et al. introduced the
Adaptive Primal-Dual Splitting (APD)method in [9] which tunes the step size parameters
automatically for the CP method. The primal-dual decomposition method was proposed by
O’Connor and Vandenberghe in [18] which applied the Douglas-Rachford splitting method
to various splitting of the primal-dual optimality conditions.

More specifically, a general framework of some existing primal-dual methods solve the
saddle-point problems (1.1) by the following procedures:










x k+1 = arg minx∈X {g(x)+ x T AT yk + 1
2τ
‖x − x k‖2},

x̄ k = x k+1+ θ(x k+1− x k),

yk+1 = arg miny∈Y { f
∗(y)− yT Ax̄ k+ 1

2σ
‖y − yk‖2}.

(1.3)

In (1.3), θ is called the combination parameter, σ > 0 and τ > 0 are proximal parameters
of the regularization terms, also referred as step size parameters in e.g. [9]. In [4], it
was shown that the primal-dual procedure (1.3) is closely related to the extrapolational
gradient methods in [15, 20], the Douglas-Rachford splitting method in [8, 16] and the
alternating direction method of multipliers (ADMM) in [5]. With specific choice of pa-
rameters in (1.3), some existing primal-dual algorithms for (1.1) are recovered, and their
convergence can be guaranteed when certain restriction are imposed on these parameters.
Below are some examples.

• When θ = 0, the primal-dual procedure in (1.3) reduces to the PDHG scheme in [24]
which is indeed the Arrow-Hurwicz algorithm in [1]. This scheme has shown numer-
ical efficiencies in [24] for TV image restoration problems. In [6], the convergence
of the PDHG method has been studied insightfully by imposing additional restric-
tions ensuring that the parameters σ > 0 and τ > 0 are small. However, a counter
example has been given in [11] to show that PDHG method could be divergent even
if σ > 0 and τ > 0 are fixed at very small values.


