
Numer. Math. Theor. Meth. Appl. Vol. 12, No. 1, pp. 72-97
doi: 10.4208/ nmtma.OA-2018-0038 February 2019

A New Triangular Spectral Element Method II: Mixed
Formulation and hp-Error Estimates

Bingzhen Zhou1, Bo Wang1,� , Li-Lian Wang2 and Ziqing Xie1

1 Key Laboratory of High Performance Computing and Stochastic Information
Processing (HPCSIP), College of Mathematics and Statistics, Hunan Normal
University, Changsha 410081, P. R. China.
2 Division of Mathematical Sciences, School of Physical and Mathematical
Sciences, Nanyang Technological University, 637371, Singapore.

Received 14 March 2018; Accepted (in revised version) 15 July 2018

Abstract. Mixed triangular spectral element method using nodal basison unstructured
meshes is investigated in this paper. The method is based on equivalent �rst order
system of the elliptic problem and rectangle-triangle transforms. It fully enjoys the ten-
sorial structure and �exibility in handling complex domain s by using nodal basis and
unstructured triangular mesh. Different from the usual Galerkin formulation, the mixed
form is particularly advantageous in this context, since it can avoid the singularity in-
duced by the rectangle-triangle transform in the calculation of the matrices, and does
not require the evaluation of the stiffness matrix. An hp a priori error estimate is pres-
ented for the proposed method. The implementation details and some numerical exam-
ples are provided to validate the accuracy and �exibility of the method.

AMS subject classi�cations : 65N30, 65N35, 65N22, 35J25

Key words : Triangular spectral element method, hp error analysis, mixed form, interpolation error
in H1-norm.

1. Introduction

The spectral element method (SEM) (or hp �nite element method) [ 22] integrates the
unparalleled accuracy of a spectral method and the geometric �exibility of a �nite element
method, and also enjoys a high-level parallel computer architecture. As such, it plays an
exceedingly important part in large-scale simulations [ 4,8,13,14] . For a long time, we saw
SEM through building blocks of quadrilaterals and hexahedra with tensorial structures
(QSEM) [ 4, 8, 22] . The use of tensorial nodal basis functions in a QSEM substantially
facilitates both the implementation (e.g., the imposition of continuity across elements)
and analysis, as many numerical tools and analysis arguments in one dimension can be
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directly transplanted to multiple dimensions. However, QSEM usually requires the same
degree of freedom (DoF) on each element, so it may lose thep-adaptive capability.

In the past two decades, much progress has been made in developing triangular or
tetrahedral SEM (TSEM) on unstructured meshes. There are two noticeable trends in
designing TSEM. The �rst is built upon approximation by orth ogonal basis related to the
collapsed Duffy's transform [ 9, 10, 13, 16, 24, 26] and its important variant [ 17, 18, 23] .
The second is based on approximation by nodal basis on special nodal points [ 6,11,12,21,
28] . Here, we elaborate more on the former approach. Firstly, the spectral approximation
in triangle using polynomials was much studied (cf. [ 3, 9, 11, 19, 20, 27, 28] ). Recently,
some research efforts have been paid to the non-polynomial spectral approximations in
triangle/ tetrahedron [ 5, 16, 18, 24] . By using some rectangle-triangle transforms, these
spectral methods generate rational or irrational basis functions in triangle from standard
tensorial basis functions in rectangle. Two typical rectangle-triangle transforms: Duffy's
transform and one-to-one transform (cf. [ 18] ) are frequently adopted. One argument
against the Duffy's transform is that the mapped interpolation points are unfavourably
clustered near the singular vertex of the triangle. The situation is even severer in the
three-dimensional case. To obtain a better distribution of the mapped interpolation points,
a new one-to-one transform is designed by pulling one side ofthe triangle to two sides of
the rectangle. As long as the development of the spectral approximations in triangles, more
and more attention has been paid on corresponding TSEM. Although the new transform
has weaker singularity than the Duffy's transform, it also leads to singular integrand in the
calculation of stiffness matrix (cf. [ 18,23] ). Either a mode basis (cf. [ 18,23] ) or modi�ed
nodal basis[ 17] is used to handle the singularity. Nevertheless, the special basis functions
increase the dif�culty in extending to multi-domain cases. Usually, some other techniques
(e.g. motar �nite element [ 2,15] ) need to be employed.

This paper is the second of a series on developing TSEM based on the transform [ 18] .
In the �rst paper [ 23] , a detailed analysis of the logarithmic singularity induced by the
transform was conducted and an accurate and stable method tohandle such singularities
by using mode basis was implemented. Here, we continue to develop a �exible nodal
TSEM more applicable to multi-domain cases. The new TSEM is drawn on a mixed formu-
lation using non-polynomial spectral approximations on tr iangles. Both Duffy's transform
and the one-to-one transform can be used to generate non-polynomial basis functions for
the method. The main feature of this method is that it is unnecessary to deal with the con-
sistency condition and no singularity will appear in the cal culation of the discrete matrices.
Actually, the mixed formulation does not involve the stiffn ess matrix and the singularity in
the calculation of other matrices can be eliminated by the Jacobian. Although the mixed
formulation introduces a new auxiliary variable, it can be ef�ciently removed from the dis-
crete linear system due to the fact that the approximated mass matrix is naturally diagonal
even in the variable coef�cient case. Another main problem to form a spectral element
method using non-polynomial spectral approximations in tr iangles is how to construct and
implement a continuous approximation space. We introduce different strategies accord-
ing to the adopted transform. The proposed TSEM fully enjoysthe tensorial structure as
QSEM. Hence an ef�cient implementation can be expected. In theoretical aspect, theH1-
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norm interpolation error estimate presented in this paper contributes to the completion of
the approximation theory started in [ 23] . In addition, an hp error analysis is performed
for the proposed TSEM.

The rest of the paper is organized as follows. In Section 2, the rectangle-triangle trans-
forms are introduced to be the extreme cases of the standard transform between quadri-
laterals. By using these transforms, we then de�ne the spectral element space on unstruc-
tured triangular mesh. Theoretical analysis for interpolations in triangular spectral ele-
ment space is performed in Section 3.H1-norm interpolation error estimate is obtained. In
Section 4, we present the numerical formulation of the trian gular spectral element method
and conduct anh-p error analysis. Various numerical results are given to showthe accuracy
and �exibility.

2. Triangular spectral element space

In this section, we �rst brie�y introduce the rectangle-tri angle transform by starting
with the typical transform between quadrilaterals. Then we present some details for the
construction of conformable spectral element spaces on unstructured triangular mesh by
using two typical ƒ ! 4 transforms T0 and T1=2. Implementation techniques for ensuring
the conformability in different cases are discussed. Theh-p interpolation error estimates
in both L2 and H1 norms will be provided for the general transform T� with 0 � � � 1 at
the end of this section.

2.1. The rectangle-triangle transform

Throughout this paper, we denote by

4 := f (bx, by) : 0 < bx, by, bx + by < 1g � R2, ƒ := f (� , � ) : � 1 < � , � < 1g � R2,

the reference triangleand the reference square, respectively. Here, R is the set of all real
numbers. The vertices bP1(� 1, � 1), bP2(1, � 1), bP3(1,1) and bP4(� 1,1) of the square ƒ are
denoted simply by f bPi (� i , � i )g

4
i= 1. Given an arbitrary convex quadrilateral } with vertices

denoted by f Pi ( x i , yi )g
4
i= 1, we de�ne the constants:

� 1 =
1

4

4X

i= 1

x i � i � i , � 2 =
1

4

4X

i= 1

x i � i , � 3 =
1

4

4X

i= 1

x i � i , � 4 =
1

4

4X

i= 1

x i , (2.1a)

� 1 =
1

4

4X

i= 1

yi � i � i , � 2 =
1

4

4X

i= 1

yi � i , � 3 =
1

4

4X

i= 1

yi � i , � 4 =
1

4

4X

i= 1

yi . (2.1b)

It is well known that the iso-parametric transform:

F : x = � 1�� + � 2� + � 3� + � 4, y = � 1�� + � 2� + � 3� + � 4, 8 (� , � ) 2 ƒ (2.2)

is an one-to-one transform from ƒ to } . Its Jacobian is

J = jJj = det
� @( x, y)

@(� , � )

�
=

�
�
�
�
� 1� + � 2 � 1� + � 2

� 1� + � 3 � 1� + � 3

�
�
�
� = D1� + D2� + D3, (2.3)
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(a) T� : ƒ 7! 4 (b) LGL points on ƒ (c) LGL points by T1=2 (d) LGL points by T0

Figure 1: The rectangle-quadrilateral transforms.

where

D1 =

�
�
�
�
� 2 � 2

� 1 � 1

�
�
�
� , D2 =

�
�
�
�
� 1 � 1

� 3 � 3

�
�
�
� , D3 =

�
�
�
�
� 2 � 2

� 3 � 3

�
�
�
� . (2.4)

If all inner angles of the quadrilateral } is less than� , we have J > 0 and the inverse of
the Jacobian matrix J is

J� 1 =
1

J

–
� 1� + � 3 � � 1� � � 2

� � 1� � � 3 � 1� + � 2

™

. (2.5)

ChoosingP1(0,0), P2(1,0), P3(� , 1� � ), P4(0,1) in the transform de�ned in (2.1)-(2.2), we
have

� 1 = � 3 =
� � 1

4
, � 2 = � 4 =

� + 1

4
, � 1 = � 2 = �

�

4
, � 3 = � 4 =

2 � �

4
, (2.6)

which leads to ƒ 7! 4 transform T� (0 � � � 1) (cf. [ 23] ):

bx =
1 + �

2

2 � (1 � � )(1 + � )

2
, by =

1 + �

2

2 � � (1 + � )

2
, 8 (� , � ) 2 ƒ . (2.7)

Here, the reference triangle4 is seen as a quadrilateral with inner angle equal to� . We see
that this transform pulls the hypotenuse of 4 into two edges of ƒ at the point (� , 1 � � ).
Substituting (2.6) into (2.4) and then using formula (2.3) g ives the Jacobian ofT� :

J� (� , � ) = det(J� ) =

�
�
�
�
�
�
�
�

(� � 1)� + � + 1

4

� � (� + 1)

4
(� � 1)( � + 1)

4

� � � + 2 � �

4

�
�
�
�
�
�
�
�

=
1 � (� � + ( 1 � � )� )

8
. (2.8)

Further, the Jacobian in (bx, by) coordinates can be derived from expression (2.7), i.e.,

J� ( bx, by) =

p
(� bx � (1 � � ) by)2 + 1 � 2� bx � 2(1 � � ) by

4
. (2.9)
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Clearly, the Jacobian (2.8) has zeros in the reference square ƒ and the inverse of J� :

J� 1
� =

2

6
6
6
4

@ �

@bx

@ �

@bx
@ �

@by

@ �

@by

3

7
7
7
5

=
1

4J�

2

4
� � � + 2 � � � (� + 1)

� (� � 1)( � + 1) ( � � 1)� + � + 1

3

5 (2.10)

is not always well de�ned in the reference square.
The Duffy's transform (cf. [ 10] ) T0:

bx =
1

4
(1 + � )(1 � � ), by =

1

2
(1 + � ), 8 (� , � ) 2 ƒ (2.11)

is the limitting case of (2.7) with � = 0. The new ƒ ! 4 transform T1
2

:

bx =
1

8
(1 + � )(3 � � ), by =

1

8
(3 � � )(1 + � ), 8 (� , � ) 2 ƒ (2.12)

introduced in [ 18] is another special case of (2.7) with � = 1
2
. Their Jacobian matrices are

given by

J0 =
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4
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2
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3 � �
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8
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� + 1

8
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8

�
�
�
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�
�
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=
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, (2.13)

and their inverses are

J� 1
0 =

2

1 � �

–
2 0

� + 1 1 � �

™

, J� 1
1
2

=
2

2 � � � �

–
3 � � � + 1
� + 1 3 � �

™

. (2.14)

For 0 < � < 1, we have the inverse transformT � 1
� :

� =
1 � � + ( � bx � (1 � � ) by) � 4J� ( bx, by)

�
, (2.15a)

� =
� � (� bx � (1 � � ) by) � 4J� ( bx, by)

1 � �
, (2.15b)

where J� ( bx, by) is de�ned in (2.9). On the other hand, we have inverse transfo rms:

T � 1
0 :

8

<

:
� =

2bx

1 � by
� 1,

� = 2by � 1,
T � 1

1 :

8

<

:

� = 2bx � 1,

� =
2by

1 � bx
� 1

(2.16)

for limiting cases � = 0,1, respectively.
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2.2. Construction of triangular spectral element space

Hereafter, let I = ( � 1,1), and for any integer p � 1, denote by Pp( I ) the set of all alge-
braic polynomials of degree at most p. Two standard polynomial spaces on the reference
squareƒ and 4 are

P p(4 ) := span
¦

bx i by j : 0 � i + j � p
©

, Q p(ƒ ) := ( Pp( I )) 2. (2.17)

The following property (cf. [ 23] ) shows that all polynomials on 4 are still polynomials on
the referenceƒ .

Proposition 2.1. Let T� be the rectangle-triangle transform de�ned in(2.7) , and P k(4 ) �
T� = f P � T� : P 2 P k(4 )g. We haveP p(4 ) � T� � Q p(ƒ ) for 0 � � � 1.

De�ne the space

Yp,� (4 ) = Q p(ƒ ) � T � 1
� = ( Pp( I )) 2 � T � 1

� , (2.18)

which consists of the images of the tensorior polynomials onƒ under the transform T � 1
� .

As a direct consequence of Proposition 2.1,

P p(4 ) � Yp,� (4 ) forall � 2 [ 0,1] .

The inverse transforms (2.15) and (2.16) imply that Yp,� (4 ) contains not only polynomi-
als, but also some special irrational functions. Accordingto the de�nition (2.18), the basis
functions of Yp,� (4 ) can be obtained by applying the transform T � 1

� to the basis functions
of Q p(ƒ ). In practice, we use the nodal basis ofQ p(ƒ ). Denote by f � i g

p
i= 0 the Legendre-

Gauss-Lobatto (LGL) points inI and f hm(� )gp
m= 0 the corresponding Lagrange interpolating

basis polynomials, i.e., hm 2 Pp( I ) and hm(� n) = � mn (where � mn is the Kronecker Delta
symbol). Then

Q p(ƒ ) = spanf ' mn : ' mn(� , � ) = hm(� )hn(� ), 0 � m, n � pg. (2.19)

This gives the nodal basis ofYp,� (4 ) :

Yp,� (4 ) = span
�
 mn :  mn( bx, by) = � mn � T � 1

� ( bx, by), 0 � m, n � p
	
. (2.20)

Let Th := f Kgdenote a shape regular quasi-uniform triangular mesh of a polygonal domain

 . Denote byhK = diam(K) the diameter of element K, h = maxf hKg. Th is a shape regular
quasi-uniform mesh if there exists positive constantsc0 and c1 such that

max
K2T h

h2
K

jKj
� c0,

h

min
K2T h

hK
� c1, (2.21)

where jKj is the measure ofK. The triangular spectral element space onTh is de�ned as

S�
h,p(Th) =

¦
vh 2 H1(
) : vhjK � FK 2 Yp,� (4 ), 8 K 2 T h

©
, (2.22)
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Figure 2: Physical node distribution viaT0 in an unstructured mesh (p = 10).

where FK : 4 ! K is the standard af�ne mapping from the reference triangle 4 to a
physical element K 2 T h. Although the de�nition of triangular spectral element spa ce
S�

h,p(Th) follows the classic way, some cases have to be taken to imposethe continuity
across elements due to the singularity introduced by the transform T� . In what follows,
we elaborate on two typical cases using transformsT0, T1=2 and show how to construct
continuous global basis functions from local basis functions on arbitrary unstructured mesh
Th.

Case I: The Duffy's transform T0. Due to the collapsed Duffy's transform T0, the
nodes f (bxm, byn)gp

m,n= 0 in the reference triangle 4 clustered near the singular vertex (0,1)

and all nodes f (bxm, byn)gp
m,n= 0 collapsed to one node at(0,1). After applying the standard

af�ne mapping FK , the corresponding nodes f ( xK
m, xK

n )gp
m,n= 0 in the physical element K

also clustered near one vertex ofK. The physical nodesf ( xK
m, xK

n )gp
m,n= 0 may be clustered

near any vertex of the physical elementK due to the rotational free of the mapping FK .
In an unstructured mesh a vertex Vj may be shared by several elements see Fig. 2. In the
attached elements, some elements have nodes clustered nearVj and the others do not, e.g.,
K2 and K3 in Fig. 2 have nodes clustered nearVj . Although there are nodes clustered near
vertices, the nodes from neighboring elements matched witheach other on their common
edge, e.g., in Fig. 2 nodes inK1 and K2 mathed on their common edge. For ensuring
the continuity of the numerical solution, we only need to han dle the nodes clustered near
vertices. We merge all nodes clustered at a given vertexVj to one node. This can be done
by assigning one global index to all nodes corresponding toVj in the implementation. For
example, there are 4+ 2(p + 1) nodes share one global index determined by the vertex
Vj in Fig. 2. It is worthy pointing out that this implementation technique is equivalent to
using polynomial space (cf. [ 24] )

eQp(ƒ ) =
¦

� 2 Pp( I ) � Pp( I ) : @� � (� , 1) = 0
©

. (2.23)

The basis functionhp(� ) � T � 1
0 ( bx, by) is acutally used for node at vertex (0,1) in the refer-

ence triangle.

Case II: The one-to-one transform T1=2. The transform T1=2 maps the hypotenuse
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Figure 3: Inconsistent physical node distribution viaT1=2 and arbitrary elemental a�ne mappings (p =
10).
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Figure 4: Consistent physical node distribution viaT1=2 and adjusted elemental a�ne mappings (p = 10).

of the reference triangle 4 to two sides of the reference rectangle ƒ . Therefore, the
number of nodes on the hypotenuse of4 is twice as many as that on other two sides
due to the transform T1=2, see Fig. 1 (c). As a result, each physical elementK inherits
such inconsistency. Since af�ne mappingsFK randomly map edges inK to hypotenuse and
other two edges of refrence triangle 4 , the images of a common edge of two neighboring
elements may be different edges in4 . If one maps the common edge to the hypotenuse
of 4 and the other maps it to another different side of 4 , then the common edge have
differnet number of nodes from two sides (see K3 and K4 in Fig. 3). This inconsistency
will cause great dif�culty in the contruction of continuous spectral element spaceS�

h,p(Th).
Fortunately, the inconsistency can be avoid by con�guring the elemental af�ne mappings
FK properly. For any interior edge ei j = Ki \ K j , we choose elemental mappingsFKi

and FK j

such that FK j
mappsei j to the hypotenuse of4 if and only if FKi

mapsei j to the hypotenuse
of 4 , see Fig. 4. The required elemental mapping con�guration can be determined by the
mesh beforehand. Numerical examples show that con�gurations without producing node
inconsistency are available even for complicate unstructured meshes (see, examples given
in Subsection 4.3). Once we have the node consistent elemental mappings ready, the
implementation of TSEM using transform T1=2 becomes quite simple. We just view a given
triangular mesh as a deformed quadrilateral mesh by view each triangular element as a
deformed quadrilateral element in which the middle point of the hypotenuse becomes a
new vertex.
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3. The approximation properties of S�
h,p(Th)

We �rst introduce some notions. The weighted Sobolev spaceH r
w(
) with r > 0 is

de�ned as in Adams [ 1] , and its norm and semi-norm are denoted byjj � jj r,w,
 and j � j r,w,
 ,
respectively. In particular, if r = 0, we denote the inner product and norm of L2

w(
) by
(�, �)w,
 and jj � jj w,
 , respectively. Moreover, if w � 1, we drop it from the notion.

With the LGL points f � j g
p
j= 0 and corresponding Lagrangian polynomial basisf h j (� )gp

j= 0,

the LGL interpolation of given function v 2 C( Ī ) is de�ned as

�
I �
p v

�
(� ) =

pX

j= 0

v(� j )h j (� ) 2 Pp, 8 � 2 Ī . (3.1)

Moreover, the following estimates hold.

Lemma 3.1. If v 2 H r ( I ) with r � 1 and � = 0,1, we have

 ( I �

p v � v)(� )



L2( I ) � C p� � r

 (1 � � 2)( r � 1)=2v( r )




L2( I ) . (3.2)

Proof. For � = 0, it is the direct result of Theorem 3.44 in [ 25] . To prove the estimate
for � = 1, one veri�es that

v02 Br � 1
0,0 ( I ) :=

n
w 2 L2( I ) : w(k) 2 L2

! k,k ( I ), 0 � k � r � 1
o

for any v 2 H r ( I ), r � 1. Here

! k,k(� ) = ( 1 � � )k(1 + � )k

is the Jacobi weight function. Applying the estimate in Lemma 2.3 in [ 24] , we obtain the
inequality for � = 1. ƒ

For any bu 2 C(4 ), de�ne interpolation II p,� bu(bx, by) 2 Yp,� (4 ) such that

II p,� bu(bx i , by j ) = bu(bx i , by j ), 0 � i , j � p, (3.3)

where f (bx i , by j ) = T� (� i , � j )g are the mapped LGL points. Let

eu(� , � ) = ( bu � T� )( � , � ).

One veri�es readily that

( II p,� bu)( bx, by) =
�

( I �
p I �

p eu) � T � 1
�

�
( bx, by) =

�
( I �

p I �
p eu) � T � 1

�

�
( bx, by). (3.4)

It is worthy of pointing out that an interpolation with LGL in � -direction and JGR points in
� -direction for the case � = 0 was investigated in [ 24] . Nevertheless, it cannot be used to
de�ne an interpolation in the conformal spectral element sp ace S0

h,p(Th) due to the usage
of JGR points in � -direction. Here the interpolation II p,� uses the LGL points in both� and



Triangular Spectral Element Method II: Mixed Formulation and hp-Error Estimates 81

� -directions. Once proper af�ne mappings FK is set for 0 < � < 1 as stated in the last
section, the global interpolation of any given function u 2 C(
̄) in the spaceS�

h,p(Th) can
be directly de�ned as

(I �
h,pu)( x, y) = ( II p,� bu)( F� 1

K ( x, y)) , ( x, y) 2 K, 8 K 2 T h, (3.5)

where
bu(F� 1

K ( x, y)) = u( x, y), 8 ( x, y) 2 K, K 2 T h.

The continuity of I �
h,pu in 
 can be veri�ed for all 0 � � � 1.

An L2-error estimate for II p, 1
2

has been proved in[ 23] . However, an H1-error estimate

is usually indispensable in the error analysis of the spectral element method. By using
Lemma 3.1, we can derive the following H1-error estimate.

Theorem 3.1. Supposebu 2 H2(4 ). Then


 II p,� bu � bu




� ,4 � C p� � 2
�

jbuj2,4 + k(@by � @bx)2bukJ� 1
� ,4 + k br bukJ� 1

� ,4

�
, � = 0,1 (3.6)

for 0 < � < 1, where J� is the Jacobian as de�ned in(2.8) .
Moreover, ifbu 2 H r (4 ) with r � 3, then

k II p,� bu � bu k� ,4 � C p� � r �
jbuj r,4 + jbuj r � 1,4

�
, � = 0,1 (3.7)

for 0 � � � 1.

Proof. Let Id be the identity operator and

eu(� , � ) = ( bu � T� )( � , � ).

From (2.8) and (2.10), we have

J� , J�
@ �

@bx
, J�

@ �

@by
, J�

@ �

@bx
, J�

@ �

@by

uniformly bounded in ƒ for all 0 � � � 1. Then together with (3.4), we derive that


 II p,� bu � bu


 2

4 =

 ( I �

p I �
p eu � eu)J�


 2

ƒ � C

 I �

p I �
p eu � eu


 2

ƒ , (3.8a)

 II p,� bu � bu


 2

4 +

 @bx( II p,� bu � bu)


 2

4 +

 @by( II p,� bu � bu)


 2

4

=

 ( I �

p I �
p eu � eu)J�


 2

ƒ +


 @� ( I �

p I �
p eu � eu)

@ �

@bx
J� + @� ( I �

p I �
p eu � eu)

@ �

@bx
J�





2

ƒ

+


 @� ( I �

p I �
p eu � eu)

@ �

@by
J� + @� ( I �

p I �
p eu � eu)

@ �

@by
J�





2

ƒ

� C
� 

 I �
p I �

p eu � eu

 2

ƒ + k@� ( I �
p I �

p eu � eu)k2
ƒ + k@� ( I �

p I �
p eu � eu)k2

ƒ

�
. (3.8b)
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Using the decomposition

I �
p I �

p eu � eu =
�

I �
p � Id

��
I �
p � Id

�
eu +

�
I �
p � Id

�
eu +

�
I �
p � Id

�
eu,

and the approximation results in Lemma 3.1, we have estimates:


 I �

p I �
p eu � eu




4 � C
� 

 ( I �
p � Id)( I �

p � Id)eu



ƒ +

 ( I �

p � Id)eu



ƒ +

 ( I �

p � Id)eu



ƒ

�

� C p� 1

 ( I �

p � Id)@� eu



ƒ + C
� 

 ( I �
p � Id)eu




ƒ +

 ( I �

p � Id)eu



ƒ

�

� C p� r � 
 (1 � � 2)

( r � 2)
2 @� @r � 1

� eu



ƒ +

 (1 � � 2)

( r � 1)
2 @r

� eu



ƒ +

 (1 � � 2)

( r � 1)
2 @r

� eu



ƒ

�
, (3.9a)

k@� ( I �
p I �

p eu � eu)kƒ � C

 @� [( I �

p � Id)( I �
p � Id)eu] + @� [( I �

p � Id)eu] + ( I �
p � Id)@� eu




ƒ

� C
� 

 @� [( I �
p � Id)( I �

p � Id)eu]



ƒ +

 @� [( I �

p � Id)eu]



ƒ +

 ( I �

p � Id)@� eu



ƒ

�

� C

 ( I �

p � Id)@� eu



ƒ + C p1� r

 (1 � � 2)

( r � 1)
2 @r

� eu



ƒ

� C p1� r
� 

 (1 � � 2)
( r � 2)

2 @� @r � 1
� eu




ƒ +

 (1 � � 2)

( r � 1)
2 @r

� eu



ƒ

�
, (3.9b)

k@� ( I �
p I �

p eu � eu)kƒ � C p1� r
� 

 (1 � � 2)
( r � 2)

2 @� @r � 1
� eu




ƒ +

 (1 � � 2)

( r � 1)
2 @r

� eu



ƒ

�
. (3.9c)

Next, we bound the four terms

E(1)
r,ƒ (eu) = k (1 � � 2)( r � 1)=2@r

� eu kƒ , E(2)
r,ƒ (eu) = k (1 � � 2)( r � 1)=2@r

� eu kƒ , (3.10a)

E(3)
r,ƒ (eu) = k (1 � � 2)( r � 2)=2@� @r � 1

� eu kƒ , E(4)
r,ƒ (eu) = k (1 � � 2)( r � 2)=2@� @r � 1

� eu kƒ (3.10b)

in the right-hand sides using norm of u on 4 one by one. In the following estimate, we
shall only consider the case� = 0. Other cases� 6= 0 can be estimated in similar way
(ref. [ 23] ).

Recalling (2.8), we obtain from a direct calculation that

@� bx =
1 � �

4
, @� by = 0, (3.11a)

@� bx = �
1 + �

4
, @� by =

1

2
, (3.11b)

@� eu =
� 1 � �

4

�
@bxbu,

@eu

@ �
= �

1 + �

4
@bxbu +

1

2
@bybu. (3.11c)

De�ne

a(� , k) :=
� 1 � �

4

� k
, b(� , k) =

�
�

1 + �

4

� k
.
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Then we have

@r
� eu = a(� , r )@r

bx bu, @r
� eu =

rX

k= 0

‚
r
k

Œ

b(� , k)
� 1

2

� r � k
@k

bx @r � k
by bu, (3.12a)

@r � 1
� @� eu = @�

h
a(� , r � 1)@r � 1

bx bu
i

= �
r � 1

4
a(� , r � 2)@r � 1

bx bu + a(� , r )@r
bx bu, (3.12b)

@� @r � 1
� eu = @�

h r � 1X

k= 0

‚
r � 1

k

Œ

b(� , k)
� 1

2

� r � k� 1
@k

bx @r � k� 1
by bu

i

=
r � 1X

k= 0

‚
r � 1

k

Œ� 1

2

� r � k� 1h
b(� , k + 1)@k+ 1

bx @r � k� 1
by bu

+
b(� , k)

2
@k

bx @r � k
by bu �

k

4
b(� , k � 1)@k

bx @r � k� 1
by bu

i
. (3.12c)

Notice that for all (� , � ) 2 ƒ ,

0 �
a(� , k)

J0(� , � )
=

� 1 � �

4

� k 8

1 � �
= 2a(� , k � 1), 8 k � 1, (3.13)

so the following estimates hold

E(1)
r,ƒ =

� Z Z

ƒ

(@r
� eu)2(1 � � 2) r � 1d� d�

� 1
2 =



 2a

�
� ,

2r � 1

2

�
(1 � � 2) r � 1@r

bx bu




4
, (3.14a)

E(2)
r,ƒ =

� Z Z

ƒ

(@r
� eu)2(1 � � 2) r � 1d� d�

� 1
2

� C
rX

k= 0



 b(� , k)(1 � � 2)

r � 2
2 (1 + � )

1
2 @k

bx @r � k
by bu





4
, (3.14b)

E(3)
r,ƒ =

� Z Z

ƒ

(1 � � 2) r � 2(@� @r � 1
� eu)2d� d�

� 1
2

� C
h


 (1 � � 2)( r � 2)=2a

�
� ,

2r � 5

2

�
@r � 1

bx bu




4

+


 (1 � � 2)( r � 2)=2a

�
� ,

2r � 1

2

�
@r

bx bu




4

i
, (3.14c)

E(4)
r,ƒ =

� Z Z

ƒ

(1 � � 2) r � 2(@� @r � 1
� eu)2d� d�

� 1
2

� C
r � 1X

k= 0

h

 c(� , r ) b(� , k + 1)@k

bx @r � k� 1
by bu





4
+



 c(� , r ) b(� , k)@k

bx @r � k
by bu





4

+


 c(� , r ) b(� , k � 1)@k

bx @r � k� 1
by bu





4

i
, (3.14d)
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where c(� , r ) = ( 1� � 2)( r � 3)=2(1+ � )1=2. For r � 3, using the boundedness ofa(� , 2r � 5
2

), c
(� , r ), b(� , r � 2), we obtain

E(1)
r,ƒ + E(2)

r,ƒ + E(3)
r,ƒ + E(4)

r,ƒ � C(jbuj r,4 + jbuj r � 1,4 ). (3.15)

A combination of (3.8a)-(3.9c) and (3.14b)-(3.14d) leads t o the error estimate (3.7) for
� = 0. ƒ

Remark 3.1. For 0 < � < 1, the integral

Z

ƒ

1

J� (� , � )
d� d� = 16(1 � ln 2(1 � � )) �

8

1 � �
[ 2� (ln2� � 1) � 2(ln2 � 1)]

is �nite. Thus, error estimate for k II p,� bu� bu k� ,4 , 0 < � < 1 can be obtained using weighted
norm jbuj2,4 + k(@by � @bx )2bukJ� 1

� ,4 + k br bukJ� 1
� ,4 for all bu 2 H2(4 ) (ref. [ 23] ). However, the

error estimate for k II p,0bu � bu k� ,4 and k II p,1bu � bu k� ,4 requires bu 2 H r (4 ), r � 3.

Recall that Th is a shape regularquasi-uniform mesh of the domain 
 . There holds the
following scaling results (cf. [ 7] ).

Lemma 3.2. Let K be an element inTh, and FK be the af�ne mapping from the reference
triangle 4 to K. If u 2 H r (
) , r � 0, bujK = u � FK , then

juj r,K � Ch1� r jbuj r,4 , jbuj r,4 � Chr � 1juj r,K, (3.16)

The scaling argument leads to the following hp error estimate.

Theorem 3.2. If u 2 H r (
) , r � 3, and Th is a shape regular quasi-uniform mesh, then

ku � I �
h,puk� ,
 � C p� � r �

hr � � juj r,
 + hr � � � 1juj r � 1,

�
, � = 0,1 (3.17)

for 0 � � � 1.

Proof. Recalling the de�nition (3.5) and then applying Lemma 3.2 an d Theorem 3.1,
we have


 u � I �

h,pu



� ,K =

 bu � F� 1

K � ( II p,� bu) � F� 1
K




� ,K � Ch1� � kbu � II p,� buk� ,4

� Ch1� � p� � r (jbuj r,4 + jbuj r � 1,4 ) � C p� � r �
hr � � juj r,K + hr � � � 1juj r � 1,K

�
(3.18)

for all K 2 T h. Then the conclusion can be obtained by a direct summation. ƒ
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4. Triangular spectral element methods in mixed formulation

4.1. The scheme

Consider the elliptic boundary value problem

�r � (� (x )r u) +  (x )u = f in 
 , uj@
 = 0, (4.1)

where 
 is an open, bounded and polygonal domain with Lipschitz boundary. We assume
that � ( x, y)  ( x, y) are given positive functions in 
 . By introducing an auxiliary variable
q, the elliptic equation (4.1) is rewritten to the following � rst order system

q � � r u = 0 in 
 , (4.2a)

� r � q +  u = f in 
 , (4.2b)

u = 0 on @
 . (4.2c)

With the standard space L2(
) and Sobolev spacesH1(
) , H1
0 (
) , the variational form of

the problem (4.2) is of the form: �nd (q,u) 2 ( L2(
)) 2 � H1
0 (
) such that

(q, v) � (� r u, v) = 0, (4.3a)

(q, r w) + (  u, w) = ( f , w) (4.3b)

for all (v, w) 2 ( L2(
)) 2 � H1
0 (
) .

De�ne

V�
p,h(Th) =

¦
v 2 ( L2(
)) 2 : v jK � F� 1

K 2 (Yp,� (4 )) 2, 8 K 2 T h

©
. (4.4)

The spectral element formulation of (4.3) is to �nd (Qh,p, Uh,p) 2 V�
h,p(Th) � (S�

h,p(Th) \

H1
0 (
)) , s.t.

(Qh,p, vh,p) � (� r Uh,p, vh,p) = 0, (4.5a)

(Qh,p, r wh,p) + (  Uh,p, wh,p) = ( f , wh,p) (4.5b)

for all (vh,p, wh,p) 2 V�
h,p(Th) � (S�

h,p(Th) \ H1
0 (
)) .

Theorem 4.1. Let u and Uh,p be the solutions of(4.3) and (4.5) , respectively. If u2 H1
0 (
) \

H r (
) with r > 2, then

k u � Uh,p k� ,
 � Chr � � � 1p� � r kukr,
 , � = 0,1, (4.6)

where C is a positive constant independent of h, p and u.

Proof. Set v = r w in (4.3) and vh,p = r wh,p in (4.5). The resulted equation implies

(� r u, r w) + (  u, w) = ( f , w), 8 w 2 H1
0 (
) , (4.7a)

(� r Uh,p, r wh,p) + (  Uh,p, wh,p) = ( f , wh,p), 8 wh,p 2 S�
h,p(Th) \ H1

0 (
) . (4.7b)
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Taking w = wh,p in (4.7a) and then subtracting (4.7b) from the resulted equa tion, we have
standard error equation

(� (r u � r Uh,p), r wh,p) + (  (u � Uh,p), wh,p)) = 0, 8 wh,p 2 S�
h,p(Th) \ H1

0 (
) . (4.8)

The proof can be completed by using the standard error analysis technique with the inter-
polation estimate given by Theorem 3.2. ƒ

4.2. Tensorial structure for ef�cient implementation

Using the Lagrange nodal basis, we have

Qh,pjK j
=

pX

m= 0

pX

n= 0

Q( j )
mn mn(F� 1

K j
( x, y)) , Uh,pjK j

=
pX

m= 0

pX

n= 0

U( j )
mn mn(F� 1

K j
( x, y)) (4.9)

for 8 K j 2 T h. Then the spectral element formulation (4.5) leads to the li near system

2

6
4

M 0 � Cx

0 M � Cy

CT
x CT

y M 

3

7
5

2

6
4

Qx

Qy

U

3

7
5 =

2

6
4

0
0
F

3

7
5 , (4.10)

where the global matrices M,Cx ,Cy ,M  and righthand side F is obtained from the local

contributions (or elements) M ( j ) , C( j )
x ,C( j )

y , M ( j )
 , F( j ) by subassembly. The unknown vectors

Qx ,Qy ,U consist of nodal values ofQh,p and Uh,p. Since the basis functions are construct-
ed by the tensor products of one-dimensional Lagrange basisfunctions f hm(� ), hn(� )g, we
expect to write the local matrices as the Kronecker productsof one dimensional local ma-
trices. Due to the usage of transform from rectangle to triangle, it is more complicate than
that of the QSEM as presented below.

To �x the idea, we assume that � (x ) and  (x ) are piecewise constants and� (x ) =
� j ,  (x ) =  j , 8 x 2 K j . De�ne matrices

eM = ( eMi j ), bM = ( bMi j ), eC = ( eCi j ), bC = ( bCi j )

with

eMi j =

Z 1

� 1

hi (� )h j (� )d� , bMi j =

Z 1

� 1

hi (� )h j (� )� d� , (4.11a)

eCi j =

Z 1

� 1

hi (� )h0
j (� )d� , bCi j =

Z 1

� 1

hi (� )h0
j (� )� d� , (4.11b)

and denote by

	 ( j )
mn( x, y) :=  mn(F� 1

K j
( x, y)) , m, n = 0,1, � � � , p, (4.12)
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i.e., the restrictions of typical basis functions to a givenelement K j . Then

Z

K j

	 ( j )
mn( x, y)	 ( j )

m0n0( x, y)d xd y

= 2jK j j

Z

ƒ

hm(� )hn(� )hm0(� )hn0(� )J� (� , � )d� d�

=
jK j j

4

€
eMmm0 eMnn0 � � bMmm0 eMnn0 � (1 � � ) eMmm0 bMnn0

Š
. (4.13)

where the expression (2.8) of J� is used. Similarly,

Z

K j

	 ( j )
mn( x, y)r 	 ( j )

m0n0( x, y)d xd y

= 2jK j jJ
� 1
FKj

Z

ƒ

hm(� )hn(� )J� J� 1
�

–
h0

m0(� )hn0(� )
hm0(� )h0

n0(� )

™

d� d�

=
jK j j

2
J� 1

FKj

2

4
(� � bCmm0 + ( 2 � � ) eCmm0) eMnn0 + � eMmm0( bCnn0 + eCnn0)

(1 � � )( bCmm0 + eCmm0) eMnn0 + eMmm0(( � � 1) bCnn0 + ( 1 + � ) eCnn0)

3

5 , (4.14)

by the expression (2.8) and (2.10). With the formulations (4 .13)-(4.14), the local contri-
butions (or elements) M ( j ) , M ( j )

 , C( j )
x , C( j )

y , F( j ) can be written in Kronecker products as
follows

M ( j ) =
jK j j

4

�
eM 
 eM � � ( bM 
 eM � eM 
 bM) � eM 
 bM

�
, (4.15a)

C( j )
x =

jK j j

2

��
� ( j )

11
bC + � ( j )

12
eC

�

 eM + eM 


�
� ( j )

13
bC + � ( j )

14
eC

��
, (4.15b)

C( j )
y =

jK j j

2

��
� ( j )

21
bC + � ( j )

22
eC

�

 eM + eM 


�
� ( j )

23
bC + � ( j )

24
eC

��
, (4.15c)

M ( j )
 =  jM

( j ) , F( j ) = M ( j ) f , (4.15d)

where f is the vector of interpolant nodal values of f (x ) and

(� ( j )
i j )2� 4 = J� 1

FKj

–
� � 2 � � � �

1 � � 1 � � � � 1 1 + �

™

. (4.16)

The formulation for F( j ) results from the insertion of the interpolant of f (x ) into the right
handside integration.

Remark 4.1. For general variable coef�cients � (x ),  (x ), the coef�cients are �rstly ap-
proximated by LGL interpolation, see more details in [ 8] .
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The main advantage of the proposed triangular spectral element mixed formulation is
that it does not involve the stiffness matrix which consists of integral

ZZ

K j

r 	 ( j )
mn � r 	 ( j )

m0n0dbxdby

= 2jK j j

ZZ

ƒ

•
J� 1

FKj
J� 1

�
er  mn

‹
�
•

J� J� 1
FKj

J� 1
�

er  m0n0

‹
d� d� , (4.17)

where er = ( @� , @� )T. Recalling (2.10), J� 1
� has singularities in ƒ and the singularity can

be removed by multiplying J� . Therefore, the LGL quadrature can be used to calculate
integrals (4.13) and (4.14) but can not be used to calculate integral (4.17). Some analytic
means for the computation of (4.17) have been intensively studied by using mode basis (cf.
[ 23] ). However, it seems to be not applicable to the case with general variable coef�cients.

Here, LGL quadrature is used to calculate the entrieseMi j , bMi j , eCi j , bCi j . For example, we
actually set

eMi j =
NX

k= 0

hi (� k)h j (� k)! k, bMi j =
NX

k= 0

hi (� k)h j (� k)� k! k (4.18)

in the numerical calculation. Since the nodal basis with respect to LGL points is adopted,
eM and bM become diagonal, i.e., eM = diag(! k) and bM = diag(� k! k). Together with the
Kronecker product formulation, we conclude that M and M  are diagonal too. Therefore
Qx ,Qy can be easily solved fromU and the linear system (4.10) reduces to

(CT
xM � 1Cx + CT

yM � 1Cy + M  )U = F. (4.19)

Noting that eMpp = bMpp for � p = 1, there are zero entries on the diagonal of M ( j ) due to
the usage of LGL quadrature. In particular for the two typical cases, we have

M ( j ) =

8

><

>:

jK j j

4
eM 


�
eM � bM

�
, � = 0,

jK j j

4

�
eM 
 eM �

1

2
bM 
 eM �

1

2
eM 
 bM

�
, � =

1

2
.

It is not dif�cult to �nd out that M ( j ) has p+ 1 zero entries on the diagonal when� = 0 and
has only one zero entry on the diagonal in the case� = 1

2
. The existance of zero entries

on the diagonal makes mass matrixM singular. Therefore the linear system (4.19) is not
available if LGL quadrature with p + 1 points is used for the calculation of all entries of bM.
It is evidence that Z 1

� 1

h2
p(� )d� 6=

Z 1

� 1

h2
p(� )� d� . (4.20)

Therefore, eMpp = bMpp is due to the fact that resolution of p + 1 points LGL quadrature
is not enough to distinguish these two integrals. In order to overcome this dif�culty, we
use Legendre-Gauss quadrature withp + 1 quadrature points for the special entry bMpp. By
improving the accuracy of bMpp, the revised approximated mass matrixM ( j ) is not singular
and the linear system (4.19) is available.
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4.3. Numerical results

Now, we present some numerical examples to verify the accuracy of the proposed T-
SEMs using two typical 4 7! ƒ transforms (2.11) and (2.12). Both convergence rates
against polynomial degree p and mesh sizeh are presented. Complex domains with un-
structured meshes and non-smooth solutions are considered.

In all numerical experiments, we test the elliptic problem ( 4.1) on various domains
with � = ex+ y ,  = 1. Smooth exact solution:

u( x, y) = cos(� ( x2 + y2)) , (4.21)

and non-smooth exact solutions:

u( x, y) = ( x + y)
5
2 , (4.22a)

u( x, y) = ( x � y)
8
3 (ex y + 1), (4.22b)

are tested.
Hereafter, we denote by Ep the L2-error of the numerical solution for �xed mesh and

polynomial degree p, Eh the L2-error for �xed polynomial degree and mesh size h. All L2-
errors are calculated by using much higher order Gauss quadrature element-by-element.
The convergence rates againstp are de�ned as

�
ln Epk

� ln Epk+ 1

pk � pk+ 1
, �

ln Epk
� ln Epk+ 1

ln pk � ln pk+ 1
,

which are the constantsc and r in the expected convergence ratesO(e� cp) and O(p� r ) for
smooth and non-smooth solutions, respectively. The convergence rate againsth is de�ned
as

ln Ehk
� ln Ehk+ 1

ln hk � ln hk+ 1
.

Example 4.1. We �rst test the accuracy of the proposed TSEMs by compared with QSEM
on Cartesian mesh. For this purpose, we set
 = [ 0,1] 2 and the triangular meshes are
generated by subdividing each element in the correspondingCartesian meshes into two
tringles, see Fig. 5 for the initial meshes and corresponding LGL-sepctral element nodes
distributions.

In this case, solution (4.22a) and (4.22b) have point and lin e singularity in the compu-
tational domain 
 and belong to H4� � and H3� � , respectively. L2-errors and correspond-
ing convergence rates presented in Tables 4.1 and 4.1, and Fig. 6 show that QSEM and the
proposed TSEMs share very similar convergence behavior. For smooth solution (4.21) all
their errors decay like O(e� cp) for �xed mesh. Spectral accuracy is obtained for smooth
solution and optimal convergence rate is observed for non-smooth solutions. It is worthy
to point out that the obtained results also show that the TSEM using T1=2 is more stable
than that using T0.
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(a) af�ne mapping (b) mapping T1=2 (c) mapping T0

Figure 5: Initial Cartesian and triangular meshes and LGL-spectral element nodes distribution.

Table 1: L2-errors and convergence rates againstp for �xed mesh.

p
SEM TSEM usingT0 TSEM usingT1=2

error rate error rate error rate

smooth solution

4 2.218E-03 1.482E-03 9.440E-04
8 1.010E-06 1.924 7.168E-07 1.908 4.306E-07 1.923
12 1.340E-10 2.232 1.796E-10 2.073 4.686E-11 2.281
16 8.716E-15 2.410 4.430E-14 2.077 4.049E-14 1.763

non-smooth solution
(4.22a)

4 9.142E-06 1.130E-05 7.274E-06
8 9.867E-08 6.534 8.855E-08 6.996 8.888E-08 6.355
12 6.961E-09 6.539 6.485E-09 6.447 6.499E-09 6.451
16 1.037E-09 6.618 9.833E-10 6.557 9.846E-10 6.560
20 2.337E-10 6.678 2.238E-10 6.632 2.241E-10 6.634

non-smooth solution
(4.22b)

4 3.215E-04 1.722E-03 4.244E-04
8 2.803E-05 3.520 1.361E-04 3.661 3.203E-05 3.728
12 7.411E-06 3.281 3.620E-05 3.267 8.089E-06 3.394
16 2.926E-06 3.230 1.436E-05 3.213 3.124E-06 3.307
20 1.430E-06 3.209 7.045E-06 3.193 1.507E-06 3.267

Example 4.2. This example is to show the feasibility and accuracy of the proposed TSEMs
on complex domains with mixed and unstructured meshes. We consider two polygonal
domains: polygon A and polygon B with vertices given by:

polygon A : (0,0), (1,0),
�

2,
1

2

�
, (1,1),

�
1,

1

2

�
, (0,1),

polygon B : R
�

cos� k + cos
�

8
, sin � k + sin

�

8

�
, (4.23a)

R
�

cos� k + 3 cos
�

8
+ 3 sin

�

8
, sin � k + sin

�

8

�
, k = 0,1, � � � , 7, (4.23b)

where � k = 2k+ 1
8

� , R = 1
2

cos �
8

. Polygon A is triangulated by hybrid meshes (with both
rectangle and triangle elements) and polygon B is triangulated by unstructured triangular
meshes, see Fig. 7 for initial meshes and spectral element nodes distributions. Solution
(4.22a) and (4.22b) also have point and line singularity in t he computational domain 

and belong to H4� � and H3� � , respectively. The hybrid meshes used here are essentially



Triangular Spectral Element Method II: Mixed Formulation and hp-Error Estimates 91

(a) smooth solution (b) non-smooth solution (4.22a)

(c) non-smooth solution (4.22b) (d) smooth solution

(e) non-smooth solution (4.22a) (f) non-smooth solution (4.22b)

Figure 6: Comparison of numerical errors between QSEM and TSEMs ((a), (b), (c): errors against p;
(d), (e), (f): errors against h).

different with that investigated in [ 17] . Their hybrid mesh actually has a hanging vertex.
The intersection of the triangular element with the neighbo ring rectangular element is not
an entire edge of the mesh. All hybrid meshes used in this paper are conformal without



92 B. Z. Zhou, B. Wang, L. L. Wang and Z. Q. Xie

(a) Polygonal A (b) Polygonal B

Figure 7: Polygonal domains with mixed and unstructured meshes.

Table 2: L2-errors and convergence rates againsth for �xed p = 6.

h
SEM TSEM usingT0 TSEM usingT1=2

error rate error rate error rate

smooth solution

1
2

4.795E-05 5.587E-05 1.945E-05
1
4

4.967E-07 6.593 4.315E-07 7.016 1.962E-07 6.631
1
8

4.571E-09 6.764 3.582E-09 6.912 1.877E-09 6.708
1
16

3.691E-11 6.952 2.878E-11 6.960 1.523E-11 6.946
1
32

3.061E-13 6.914 2.459E-13 6.870 1.580E-13 6.591

non-smooth solution
(4.22a)

1
2

6.378E-07 5.491E-07 5.518E-07
1
4

5.716E-08 3.480 4.885E-08 3.491 4.914E-08 3.489
1
8

5.089E-09 3.490 4.332E-09 3.495 4.359E-09 3.495
1
16

4.514E-10 3.495 3.835E-10 3.498 3.860E-10 3.497
1
32

3.998E-11 3.497 3.393E-11 3.499 3.415E-11 3.499

non-smooth solution
(4.22b)

1
2

7.407E-05 3.611E-04 8.822E-05
1
4

8.366E-06 3.146 4.023E-05 3.166 9.939E-06 3.150
1
8

9.352E-07 3.161 4.480E-06 3.167 1.110E-06 3.162
1
16

1.042E-07 3.165 4.986E-07 3.168 1.237E-07 3.166
1
32

1.161E-08 3.166 5.551E-08 3.167 1.378E-08 3.166

any hanging points. That is the reason why we can have optimalconvergence rates here.
L2-errors and corresponding convergence rates against polynomial degree p and mesh size
h are presented in Tables 4.1-4.3 and Figs. 8-9. For smooth solution (4.21), errors using
different TSEMs decay likeO(e� cp) for �xed mesh, i.e., spectral accuracy is obtained. On
the other hand, optimal convergence rates are observed for non-smooth solutions. The
TSEM usingT1=2 shows some advantages over that usingT0 in stability (see. Fig. 9: (c),
(f)). We make a comparison between the proposed TSEM and the TSEM presented in[ 23] .
L2-errors and convergence rates presented in Table 4.3 and Table 4.3 show that they share
similar accuracy performance. Table 4.3 compares the condition numbers of corresponding
resulted linear systems. Although TSEM usingT1=2 has larger conditon number they are in
the same order with respect to p.
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Table 3: L2-errors and convergence rates againstp for �xed mesh (mixed mesh).

p
TSEM usingT0 TSEM usingT1=2

error rate error rate

smooth solution

8 4.066E-05 4.176E-05
12 2.840E-08 1.817 2.559E-08 1.849
16 6.171E-12 2.109 6.151E-12 2.083
20 3.515E-14 1.292 2.469E-14 1.380

non-smooth solution
(4.22a)

8 9.8672008E-08 9.8672005E-08
12 6.9607996E-09 6.539 6.9608004E-09 6.539
16 1.0369973E-09 6.618 1.0369977E-09 6.618
20 2.3365902E-10 6.678 2.3365938E-10 6.678

non-smooth solution
(4.22b)

8 2.804E-05 2.803E-05
12 7.411E-06 3.281 7.411E-06 3.281
16 2.926E-06 3.230 2.926E-06 3.230
20 1.430E-06 3.210 1.430E-06 3.209

Table 4: L2-errors and convergence rates againsth for �xed p = 6 (mixed mesh).

h
TSEM usingT0 TSEM usingT1=2

error rate error rate

smooth solution

1
4

1.370E-05 1.324E-05
1
8

9.063E-08 7.240 8.685E-08 7.252
1
16

7.253E-10 6.965 6.841E-10 6.988
1
32

5.681E-12 6.996 5.334E-12 7.003

non-smooth solution
(4.22a)

1
4

5.71630E-08 5.71618E-08
1
8

5.08885E-09 3.490 5.08885E-09 3.490
1
16

4.51442E-10 3.495 4.51442E-10 3.495
1
32

4.01016E-11 3.493 3.99959E-11 3.497

non-smooth solution
(4.22b)

1
4

8.37314E-06 8.36542E-06
1
8

9.35612E-07 3.162 9.35175E-07 3.161
1
16

1.04269E-07 3.166 1.04245E-07 3.165
1
32

1.16131E-08 3.166 1.16117E-08 3.166

4.4. Concluding remarks and future work

In this paper, we have introduced a new triangular spectral element method for un-
structured mesh by using a nodal basis and rectangle-triangle transforms. It is a mixed
formulation and fully enjoys the tensorial product propert y and �exibility in handling com-
plex domains. Due to the exemption of the calculation of stiffness matrix, no singularity
appears in the generation of the discrete system. Anhp priori error estimate was presented
for the proposed method. The results obtained by this mixed formulation is a good evi-
dence that discontinuous Galerkin methods based on mixed formulation (e.g., LDG, HDG)
can be used to handle the singularity and node inconsistencysimultaneously. The devel-
opment of discontinuous triangular spectral element method based on mixed formulation
will be our future work.
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Table 5: L2-errors and convergence rates againstp for �xed mesh (unstructured triangular mesh).

p
TSEM usingT0 TSEM usingT1=2 TSEM in [ 23]
error rate error rate error rate

smooth solution

8 5.225E-05 1.569 1.115E-05 1.794 9.264E-06 1.784
12 2.735E-08 1.889 1.391E-08 1.672 1.319E-08 1.639
16 3.076E-12 2.273 2.097E-12 2.200 2.095E-12 2.187
20 6.809E-13 0.377 2.620E-13 0.520 1.686E-13 0.630

non-smooth solution
(4.22a)

8 8.746E-08 7.058 9.294E-08 5.700 9.248E-08 5.484
12 8.938E-09 5.625 1.051E-08 5.376 1.052E-08 5.360
16 1.804E-09 5.563 2.242E-09 5.371 2.253E-09 5.358
20 5.254E-10 5.527 6.748E-10 5.380 6.800E-10 5.368

non-smooth solution
(4.22b)

8 1.472E-05 4.450 1.111E-05 3.587 1.118E-05 3.301
12 3.412E-06 3.606 2.816E-06 3.385 2.919E-06 3.312
16 1.619E-06 2.591 1.170E-06 3.054 1.156E-06 3.219
20 7.574E-07 3.405 5.781E-07 3.159 6.042E-07 2.908

Table 6: L2-errors and convergence rates againsth for �xed p = 6 (unstructured triangular mesh).

h
TSEM usingT0 TSEM usingT1=2 TSEM in [ 23]
error rate error rate error rate

smooth solution

1
4

1.409E-05 6.292 9.948E-06 5.306 9.505E-06 5.297
1
8

1.082E-07 7.024 7.039E-08 7.143 6.746E-08 7.138
1
16

8.179E-10 7.048 5.526E-10 6.993 5.322E-10 6.986
1
32

6.367E-12 7.005 4.350E-12 6.989 4.205E-12 6.984

non-smooth solution
(4.22a)

1
4

7.120E-08 2.665 5.524E-08 2.999 5.472E-08 2.998
1
8

7.933E-09 3.166 6.911E-09 2.999 6.848E-09 2.998
1
16

1.046E-09 2.922 8.643E-10 2.999 8.567E-10 2.999
1
32

1.273E-10 3.039 1.089E-10 2.988 1.073E-10 2.997

non-smooth solution
(4.22b)

1
4

3.136E-06 3.225 2.689E-06 3.204 2.643E-06 3.199
1
8

3.286E-07 3.255 2.846E-07 3.240 2.793E-07 3.242
1
16

4.782E-08 2.781 3.986E-08 2.836 3.958E-08 2.819
1
32

3.601E-09 3.731 2.813E-09 3.825 3.008E-09 3.718

Table 7: A Comparison of condition numbers of TSEM usingT1=2 and TSEM presented in [23] (un-
structured triangular mesh).

p TSEM in [ 23] TSEM usingT1=2 ratio
4 8378 12514 1.494
6 37610 54453 1.448
8 112249 161924 1.443
10 264606 382459 1.445
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(a) smooth solution (b) non-smooth solution (4.22a)

(c) non-smooth solution (4.22b) (d) smooth solution

(e) non-smooth solution (4.22a) (f) non-smooth solution (4.22b)

Figure 8: Numerical errors and convergence rates of TSEMs on mixed (triangular and rectangular)
meshes ((a), (b), (c): errors againstp; (d), (e), (f): errors against h).
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(a) smooth solution (b) non-smooth solution (4.22a) (c) non-smooth solution (4.22b)

(d) smooth solution (e) non-smooth solution (4.22a) (f) non-smooth solution (4.22b)

Figure 9: Numerical errors and convergence rates of TSEMs on unstructured triangular meshes ((a),
(b), (c): errors against p; (d), (e), (f): errors against h).
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