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Abstract. Mixed triangular spectral element method using nodal basison unstructured
meshes is investigated in this paper. The method is based on aquivalent rst order
system of the elliptic problem and rectangle-triangle transforms. It fully enjoys the ten-
sorial structure and exibility in handling complex domain s by using nodal basis and
unstructured triangular mesh. Different from the usual Galerkin formulation, the mixed
form is particularly advantageous in this context, since it can avoid the singularity in-
duced by the rectangle-triangle transform in the calculation of the matrices, and does
not require the evaluation of the stiffness matrix. An hp a priori error estimate is pres-
ented for the proposed method. The implementation details and some numerical exam-
ples are provided to validate the accuracy and exibility of the method.

AMS subject classi cations : 65N30, 65N35, 656N22, 35J25

Key words: Triangular spectral element method, hp error analysis, mixed form, interpolation error
in H-norm.

1. Introduction

The spectral element method (SEM) (orhp nite element method) [22] integrates the
unparalleled accuracy of a spectral method and the geometre exibility of a nite element
method, and also enjoys a high-level parallel computer architecture. As such, it plays an
exceedingly important part in large-scale simulations[4,8,13,14]. For a long time, we saw
SEM through building blocks of quadrilaterals and hexahedra with tensorial structures
(QSEM) [4, 8,22]. The use of tensorial nodal basis functions in a QSEM substatally
facilitates both the implementation (e.g., the imposition of continuity across elements)
and analysis, as many numerical tools and analysis argumert in one dimension can be
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directly transplanted to multiple dimensions. However, QSEM usually requires the same
degree of freedom (DoF) on each element, so it may lose thep-adaptive capability.

In the past two decades, much progress has been made in deveping triangular or
tetrahedral SEM (TSEM) on unstructured meshes. There are tw noticeable trends in
designing TSEM. The rst is built upon approximation by orth ogonal basis related to the
collapsed Duffy's transform [9, 10, 13, 16, 24, 26] and its important variant [17,18, 23].
The second is based on approximation by nodal basis on spediaodal points [6,11,12,21,
28] . Here, we elaborate more on the former approach. Firstly, the spectral approximation
in triangle using polynomials was much studied (cf. [3,9, 11,19, 20, 27, 28]). Recently,
some research efforts have been paid to the non-polynomial pectral approximations in
triangle/ tetrahedron [5, 16, 18, 24]. By using some rectangle-triangle transforms, these
spectral methods generate rational or irrational basis functions in triangle from standard
tensorial basis functions in rectangle. Two typical rectangle-triangle transforms: Duffy's
transform and one-to-one transform (cf. [18]) are frequently adopted. One argument
against the Duffy's transform is that the mapped interpolation points are unfavourably
clustered near the singular vertex of the triangle. The situation is even severer in the
three-dimensional case. To obtain a better distribution of the mapped interpolation points,
a new one-to-one transform is designed by pulling one side ofthe triangle to two sides of
the rectangle. As long as the development of the spectral appximations in triangles, more
and more attention has been paid on corresponding TSEM. Altlough the new transform
has weaker singularity than the Duffy's transform, it also leads to singular integrand in the
calculation of stiffness matrix (cf. [18,23]). Either a mode basis (cf.[18,23]) or modi ed
nodal basis[17] is used to handle the singularity. Nevertheless, the specibbasis functions
increase the dif culty in extending to multi-domain cases. Usually, some other techniques
(e.g. motar nite element [2,15]) need to be employed.

This paper is the second of a series on developing TSEM baseddhe transform [18].
In the rst paper [23], a detailed analysis of the logarithmic singularity induced by the
transform was conducted and an accurate and stable method tchandle such singularities
by using mode basis was implemented. Here, we continue to deelop a exible nodal
TSEM more applicable to multi-domain cases. The new TSEM ishwn on a mixed formu-
lation using non-polynomial spectral approximations on triangles. Both Duffy's transform
and the one-to-one transform can be used to generate non-pgtnomial basis functions for
the method. The main feature of this method is that it is unnecessary to deal with the con-
sistency condition and no singularity will appear in the cal culation of the discrete matrices.
Actually, the mixed formulation does not involve the stiffn ess matrix and the singularity in
the calculation of other matrices can be eliminated by the Jacobian. Although the mixed
formulation introduces a new auxiliary variable, it can be ef ciently removed from the dis-
crete linear system due to the fact that the approximated mas matrix is naturally diagonal
even in the variable coef cient case. Another main problem to form a spectral element
method using non-polynomial spectral approximations in triangles is how to construct and
implement a continuous approximation space. We introduce dfferent strategies accord-
ing to the adopted transform. The proposed TSEM fully enjoysthe tensorial structure as
QSEM. Hence an ef cient implementation can be expected. In heoretical aspect, theH?-
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norm interpolation error estimate presented in this paper contributes to the completion of
the approximation theory started in [23]. In addition, an hp error analysis is performed
for the proposed TSEM.

The rest of the paper is organized as follows. In Section 2, tke rectangle-triangle trans-
forms are introduced to be the extreme cases of the standard ransform between quadri-
laterals. By using these transforms, we then de ne the spectal element space on unstruc-
tured triangular mesh. Theoretical analysis for interpolations in triangular spectral ele-
ment space is performed in Section 3.H-norm interpolation error estimate is obtained. In
Section 4, we present the numerical formulation of the trian gular spectral element method
and conduct anh-p error analysis. Various numerical results are given to showthe accuracy
and exibility.

2. Triangular spectral element space

In this section, we rst brie y introduce the rectangle-tri angle transform by starting
with the typical transform between quadrilaterals. Then we present some details for the
construction of conformable spectral element spaces on unisuctured triangular mesh by
using two typical f '4 transforms T, and T;—,. Implementation techniques for ensuring
the conformability in different cases are discussed. Theh-p interpolation error estimates
in both L2 and H* norms will be provided for the general transform T with O 1at
the end of this section.

2.1. The rectangle-triangle transform
Throughout this paper, we denote by
4 :=f(khp):0<hph+p<lg R’ f:=f(,): 1< , < 1g R?

the reference triangleand the reference squarerespectively. Here, R is the set of all real
numbers. The verticesP( 1, 1),P,(1, 1),P5(1,1) and Py( 1,1) of the square f are

denoted simply by fB.( ;, i)gf‘zl. Given an arbitrary convex quadrilateral } with vertices
denoted by f P, (x;, yi)gf‘zl, we de ne the constants:
1% 1% 1 X 1%
1= 7 Xiiiho 257 Xino 3T X, 4= X (2.1a)
4ot 4ot 4ot 4ot
1% X 1% X
1=7 VYiiio 27 Yiin 3=7 Vi, a=5 Vi (2.1b)
4ic1 4ic1 4ot 4ot

It is well known that the iso-parametric transform:
Frx= 1 + 2+ 3+ 4 y= 1 + 2+ 3+ 4 8(,)2f (22

is an one-to-one transform from f to } . Its Jacobian is

axy _ 1+t 2 1+ 2 _
a.) 1+ s 1+3_D1+D2+D3' 3)

J=jJj= det
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(-1,1) (L) (-L1) (1,1)
/// o e . .
e
/////
(6,1-6)
(-1,-1) (1,-1) (-1,-1) (1,-1) (0,0) — .(170) (0,0) (1,0)
@ T:f7'4 (b) LGL points on f (c) LGL points by T;, (d) LGL points by T,
Figure 1: The rectangle-quadrilateral transforms.
where
D,= 2 2, D= ' ' Dy= %2 %, (2.4)
1 1 3 3 3 3

If all inner angles of the quadrilateral } is less than , we have J > 0 and the inverse of
the Jacobian matrix J is

™

(2.5)

ChoosingP;(0,0),P(1,0),P5( ,1 ), P4(0,1) in the transform de ned in (2.1)-(2.2), we
have

1 +1 2
15 3%~ 2% 4T T 1T 2% g 3T 4T (2.6)
which leadsto f 7!4 transform T (0 1) (cf. [23]):

1+ 2 (1 W1+ ) b= 1+ 2 1+ )

k= , > > , 8(,)2f. (2.7

2 2
Here, the reference triangle4 is seen as a quadrilateral with inner angle equalto . We see
that this transform pulls the hypotenuse of 4 into two edges of f at the point ( ,1 ).
Substituting (2.6) into (2.4) and then using formula (2.3) g ives the Jacobian of T :

( 1) + +1 (+1)
1 1
IO, )=detd)= 1;4(”) fz 1 +e§ ) ) g
4 4

Further, the Jacobian in (R, §) coordinates can be derived from expression (2.7), i.e.,

p
(R (1 HP?2+1 2k 21 )

J (k)= Z . (2.9)
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Clearly, the Jacobian (2.8) has zeros in the reference squag f and the inverse ofJ :

2 3
@ @ 2 3
@ @k 1 +2 ( +1
@ @5 4 n+1 ( 1+ +1
@ a
is not always well de ned in the reference square.
The Duffy's transform (cf. [10]) Ty:
1 1
k= Z(1+ W1 ), g-= §(1+ ), 8(,)2f (2.11)
is the limitting case of (2.7) with = 0. Thenew f !4 transform T :
2
1 1
h=—(1+ )3 ), b=z )i+ ) 8(,)2f (212)
introduced in [18] is another special case of (2.7) with = % Their Jacobian matrices are
given by
1 0 3 +1
_ 4 _ 1L _ 8 _2
= L 17T %T h1 o3 T @D
4 2 8 8
and their inverses are
_ ™ _ ™
2 2 0 2 3 +1
1_ 1-_ -
Jo = I +1 1 : J% 2 +1 3 : (2.14)
For0< < 1, we have the inverse transformT 1
1 +( kR (1 4] (k,
_ ( ( )b) ( b)’ (2.15a)
R (1 4] (h,
_ ( ( )b ( b), (2.15b)
1
where J (R, ) is de ned in (2.9). On the other hand, we have inverse transforms:
8
< = 2k 1 < =2k 1,
T, 1. 1 T, 1. . 2k L (2.16)
=2p 1, 1 B

for limiting cases = 0, 1, respectively.
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2.2. Construction of triangular spectral element space

Hereafter, let | =( 1,1), and for any integer p 1, denote by P,(1) the set of all alge-
braic polynomials of degree at mostp. Two standard polynomial spaces on the reference
squaref and 4 are

Lo ©
Pp(4):=span k' :0 i+j p, Qp(f):=(Pp(I))2. (2.17)

The following property (cf. [23]) shows that all polynomials on 4 are still polynomials on
the referencef .

Proposition 2.1. Let T be the rectangle-triangle transform de ned if2.7), and P (4 )
T=fP T :P2P(4)g WehaveP,(4) T Q ,(f)for0 1.

De ne the space
Yp (4)=Qp(f) T '=(R(I)* T4 (2.18)

which consists of the images of the tensorior polynomials onf under the transform T 1.
As a direct consequence of Proposition 2.1,

P,(4) Y, (4) foral 2[0,1].

The inverse transforms (2.15) and (2.16) imply that Y, (4 ) contains not only polynomi-
als, but also some special irrational functions. Accordingto the de nition (2.18), the basis
functions of Y,, (4 ) can be obtained by applying the transform T ! to the basis functions
of Qu(f ). In practice, we use the nodal basis ofQ ,(f ). Denote by f igip=0 the Legendre-
Gauss-Lobatto (LGL) points inl and fh,,( )g'om=0 the corresponding Lagrange interpolating
basis polynomials, i.e.,hy, 2 Py(1) and hyy( ) = mn (Where  ,, is the Kronecker Delta
symbol). Then

Qp(f)=span’ my:" ma( » )= hym( )hs( ), O m,n pg. (2.19)
This gives the nodal basis ofY,, (4):
Yo, (4)=span  mpi mo(BB)= o T (BB, 0 mn p. (2.20)

Let Ty, := fKgdenote a shape regular quasi-uniform triangular mesh of a pdygonal domain
. Denote byhyg = diam(K) the diameter of element K, h= maxfhxg. T} is a shape regular
guasi-uniform mesh if there exists positive constantsg, and ¢; such that

—hi h 221
max : . : :
K2Th jKj “ }rgngn hk E ( )

h

where jKj is the measure ofK. The triangular spectral element space onT,, is de ned as
! ©
[ .
Sip(Th) = Vh2 HY() ik Fx 2 Yp, (4),8K2Ty (2.22)
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Figure 2: Physical node distribution vi&, in an unstructured meshg= 10).

where F¢ : 4! K is the standard af ne mapping from the reference triangle 4 to a
physical element K 2 Ty. Although the de nition of triangular spectral element spa ce
Sn,p(Th) follows the classic way, some cases have to be taken to imposthe continuity
across elements due to the singularity introduced by the transform T . In what follows,
we elaborate on two typical cases using transformsTy, T;-, and show how to construct
continuous global basis functions from local basis functians on arbitrary unstructured mesh

Case |: The Duffy's transform T,. Due to the collapsed Duffy's transform T, the
nodesf(k,, bn)gﬁmzo in the reference triangle 4 clustered near the singular vertex (0, 1)
and all nodesf(k,, bn)g&’nzo collapsed to one node at(0,1). After applying the standard
af ne mapping Fg, the corresponding nodesf(xﬁ,x,’f)gﬁmn:o in the physical element K
also clustered near one vertex ofK. The physical nodesf(xr';, x,'f)gﬁ,,ynzo may be clustered
near any vertex of the physical elementK due to the rotational free of the mapping Fg.
In an unstructured mesh a vertex V; may be shared by several elements see Fig. 2. In the
attached elements, some elements have nodes clustered neaf and the others do not, e.g.,
K, and Ks in Fig. 2 have nodes clustered nearV;. Although there are nodes clustered near
vertices, the nodes from neighboring elements matched witheach other on their common
edge, e.g., in Fig. 2 nodes inK; and K, mathed on their common edge. For ensuring
the continuity of the numerical solution, we only need to han dle the nodes clustered near
vertices. We merge all nodes clustered at a given vertex/; to one node. This can be done
by assigning one global index to all nodes corresponding toV; in the implementation. For
example, there are 4+ 2(p + 1) nodes share one global index determined by the vertex
V; in Fig. 2. It is worthy pointing out that this implementation technique is equivalent to
using polynomial space (cf.[24])

! ©
€, (f)=" 2PR() P(:@ (,1)=0 . (2.23)

The basis functionhy( ) T, (R, ) is acutally used for node at vertex (0, 1) in the refer-
ence triangle.

Case II: The one-to-one transform T,-,. The transform T,;-, maps the hypotenuse
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T

Figure 3: Inconsistent physical node distribution via,_, and arbitrary elemental a ne mappings (p =

10).

Figure 4: Consistent physical node distribution via,_, and adjusted elemental a ne mappings p = 10).

of the reference triangle 4 to two sides of the reference rectangle f . Therefore, the
number of nodes on the hypotenuse of4 is twice as many as that on other two sides
due to the transform T,-,, see Fig. 1 (c). As a result, each physical elemenK inherits
such inconsistency. Since af ne mappingsF¢ randomly map edges inK to hypotenuse and
other two edges of refrence triangle 4 , the images of a common edge of two neighboring
elements may be different edges in4 . If one maps the common edge to the hypotenuse
of 4 and the other maps it to another different side of 4 , then the common edge have
differnet number of nodes from two sides (see K5 and K, in Fig. 3). This inconsistency
will cause great dif culty in the contruction of continuous spectral element spaceﬁmp(Th).
Fortunately, the inconsistency can be avoid by con guring the elemental af ne mappings
Fk properly. For any interior edge &; = K;\ K;, we choose elemental mappingsF, and FKj
such that FKJ_ mappse; to the hypotenuse of4 if and only if F, mapse; to the hypotenuse
of 4 , see Fig. 4. The required elemental mapping con guration can be determined by the
mesh beforehand. Numerical examples show that con gurations without producing node
inconsistency are available even for complicate unstructued meshes (see, examples given
in Subsection 4.3). Once we have the node consistent elemeral mappings ready, the
implementation of TSEM using transform T,_, becomes quite simple. We just view a given
triangular mesh as a deformed quadrilateral mesh by view ead triangular element as a
deformed quadrilateral element in which the middle point of the hypotenuse becomes a
new vertex.
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3. The approximation properties of Sn’p(Th)

We rst introduce some notions. The weighted Sobolev spaceH; () with r > 0'is
de ned as in Adams [ 1], and its norm and semi-norm are denoted byjj jj,, andj j,, ,
respectively. In particular, if r = 0, we denote the inner product and norm of L\fv() by
(, )w, andjj jj, ,respectively. Moreover, ifw 1, we drop it from the notion.

With the LGL points f J-g'jo=0 and correspon(iing Lagrangian polynomial basisf h;( )g'jozo,
the LGL interpolation of given function v 2 C(1) is de ned as

X0 _
I,v ()= v( phi()2P, 8 2T. (3.1)
j=0

Moreover, the following estimates hold.
Lemma3.1l. Ifv2H'(l)withr 1and = 0,1, we have
Cp r (1 2)(r 1):2V(r)

(I,v v)() (3.2)

L2(1) L2(1)"

Proof. For = 0, it is the direct result of Theorem 3.44 in [25]. To prove the estimate
for = 1, one veries that

n [0}
V2B (= w2 (w22, (), 0 koro1

forany v2 H'(l), r 1. Here
LR O =1 )R )"

is the Jacobi weight function. Applying the estimate in Lemma 2.3 in [ 24], we obtain the
inequality for = 1. f

For anyb 2 C(4 ), de ne interpolation I, b(k, )2 Y, (4) such that
I, 0(k;, )= b(k,B), 0 ij p, (3:3)
where f(k;, ;)= T ( ;, j)gare the mapped LGL points. Let
e( ., )=(b T)(,).

One veri es readily that

(Ip, b)(k, )= (1,18 T % (k)= (1,18 T (k). (3.4)

It is worthy of pointing out that an interpolation with LGL in  -direction and JGR points in

-direction for the case = 0 was investigated in[24]. Nevertheless, it cannot be used to
de ne an interpolation in the conformal spectral element sp ace ﬁgyp(Th) due to the usage
of JGR points in -direction. Here the interpolation I, uses the LGL points in both and
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-directions. Once proper af ne mappings Fy is set for 0< < 1 as stated in the last
section, the global interpolation of any given function u2 C() in the spaceS, p(Th) can
be directly de ned as

(I WG Y) =l BRI YY), (x,y) 2K, 8K2Ty, (3.5)
where
b(F (X, ¥))= u(x,y), 8(x,y)2K, K2Ty,
The continuity of | pU in can be veried forall 0 1.

An L2-error est|mate for I 2 has been proved in[23]. However, an H!-error estimate
'2

is usually indispensable in the error analysis of the spectal element method. By using
Lemma 3.1, we can derive the following H-error estimate.

Theorem 3.1. Supposéa 2 H2(4 ). Then

I, b b, Cp ? jbjps +k(@ @)°bk;:, +kPbk;1, , =01 (3.6)

forO0< < 1, where J is the Jacobian as de ned in2.8).
Moreover, ifb 2 H' (4 ) withr 3, then

ki, b bk 4, Cp " jbj4+ijbj, 14 , =01 (3.7)
for O 1.
Proof. Let |4 be the identity operator and
e( , )=(b T)(,).

From (2.8) and (2.10), we have

1,8 ,@ ;@ ;@
@a @ @ &
uniformly bounded in f for all 0 1. Then together with (3.4), we derive that
b b2= (Il 32 cul 2 3.8
P, 4‘(ppa Q) f p'p® (3.82)
2 2 2
I, b b,+ @I, b b, + @, b b,

= (I,1,8 8)J §+ @(,l e E)%J +@(l,l 8 E)%J ’
@ @ . 2
+ @(Iplpa B)@J +@(Iplpa a)@\] ;
C Ile a?+k@(lplpa a)k§+k@(|p|pa a)k? . (3.8b)

f
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Using the decomposition

= + +
Iplpe e} I Iq Ip Iy & Ip Iy @ IIO lqg 8,

and the approximation results in Lemma 3.1, we have estimates:

Iplpa g, C (I'D Id)(lp Id)af+ (Ip Id)af+ (I'D Id)ef

Cp! (I, ly@e +C (I, lge + (I, lye

Cp' @ VT @B+ (1 YT @+ (1 HF@a, ., (9%
k@(,1,e Bk C @I, la(l, lel+ @ll, la+(l, 1)@s

C @, 1, &+ @ll, el + (1, l)@s

C(, lw@ +Cp’ (@ 37 @,
cP’ @ HTed s+ 1 HTde, (3.95)
(r 2 1)

k@(l,l,e 8k Cp' (1 )7 @d ‘e, + 1 7T @e, . (39

Next, we bound the four terms

EV(@)=k(1 2" Y2@ak;, E2@=k(1 2" "2@ak,,  (3.10)
EY(@=k(1 2" 22@@ 'sk;, EY@=k@ 3 22?@@ ek, (3.10b)

in the right-hand sides using norm of u on 4 one by one. In the following estimate, we
shall only consider the case = 0. Other cases 6 0 can be estimated in similar way
(ref. [23]).

Recalling (2.8), we obtain from a direct calculation that

@k = 4 @y =0, (3.11a)

k= 1+ -1 3.11b
@ - Tr @b_ Ev ( )

= ! b @_ 1+ b+ ! b 3.11
@e = T @b, @— T@ E@ . (3.11c¢)

De ne
k) := ! b( ,k)= 1+ “
a( k)= 7 (k)= 7
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Then we have

83

(3.12a)

(3.12¢)

. E
X r 1 r k
@e=a( ,r)@h, @e= L L @*@ “p,
k=0
h i
@ '@e=@ a( ,r 1)@ 'b = %a( 1 2)@ 'b+a( ,r)@b,  (3.12b)
L E .
1 hKl r l 1 r kK 1 K1 |
@@ 'e= @ « bCK 5 gg e
k=0
E
X1 r 1 1 r k 1h .
:k:o k 2 b( k+ ¢ 1@ ‘o
b( ,k) k i
= @@ Kb Zb( k 1)@@ kKlp .

Notice that forall ( , )2 f,

a( k) 1 k
(,) 4

0 =2a( ,k 1), 8k 1,

so the following estimates hold

zz .
E7 = (@21 3" dd ‘= 2a ,2r2 ST,
z 7! .
E7 = (@e?(1 ' 'dd
o
C b AT+ GG b,
YA .
E7 = (1 2 @@ 'edd °
f
h - 2r 5
C (l 2)(r 2)—2a , > @ 1b .
2r 1 :
2\(r 2)=2
;Z(l ) a @gb .
B} = (1 % %@@ 'e)d d °
f
X 1h
C o nb( k+ GG “ b+ o N GG b
k=0 .

+ ¢ ,r)b( ,k 1)@*@ k 1p L

(3.13)

. (314a)

(3.14b)

(3.14¢)

(3.14d)



84 B. Z. Zhou, B. Wang, L. L. Wang and Z. Q. Xie

wherec( ,r)=(1 3 321+ )2 Forr 3, using the boundedness ofa( ,252),c
( ,r),b( ,r 2),we obtain

EV+ ED+ EQ+ EY  C(ibiog + ibi, 14)- (3.15)

A combination of (3.8a)-(3.9¢c) and (3.14b)-(3.14d) leads t o the error estimate (3.7) for
= 0. f

Remark 3.1. ForO< < 1, the integral
Z

8
T )d d =161 21 ) —I[2 (2 1) 2(n2 1)

is nite. Thus, error estimate for kll, b bk ,,0< < 1canbe obtained usingweighted
norm jbj,4 + k(@ @)2bk, 1, + kiPbk, 1, forall b2 H?(4) (ref. [23]). However, the
error estimate for k ll,ob bk 4, andkll, ;b bk , requiresb2 H'(4),r 3.

Recall that T, is a shape regularquasi-uniform mesh of the domain . There holds the
following scaling results (cf. [7]).

Lemma 3.2. Let K be an element iflT,,, and K¢ be the af ne mapping from the reference
triangle 4 to K. Ifu2 H'() ,r 0, bjx=u Fg, then

jUirk  Ch Tjbirg, jbis  CH Yjuj g, (3.16)
The scaling argument leads to the following hp error estimate.
Theorem 3.2. Ifu2 H'() ,r 3, and T is a shape regular quasi-uniform mesh, then
kul ouk  Cp "h ojuj +h Yui, 1, =01 (3.17)
for O 1.

Proof. Recalling the de nition (3.5) and then applying Lemma 3.2 an d Theorem 3.1,
we have

= b R o, b R o Chokb ol bk

Ch' p "(ibira +jbir 14) Cp " h juik+h" tjui 1k (3.18)

u l h’pu

for all K2 Ty,. Then the conclusion can be obtained by a direct summation. f
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4. Triangular spectral element methods in mixed formulation
4.1. The scheme
Consider the elliptic boundary value problem
r ((xX)rw+ (xu=f in , ug =0, (4.2)

where is an open, bounded and polygonal domain with Lipschitz boundary. We assume
that (X,y) (X,y) are given positive functionsin . By introducing an auxiliary variable
g, the elliptic equation (4.1) is rewritten to the following  rst order system

q ru=0 in (4.2a)
r g+ u=f in (4.2b)
u=20 on@ . (4.2¢)

With the standard space L?() and Sobolev spacesH’() ,HZ() , the variational form of
the problem (4.2) is of the form: nd (q,u) 2 (L?()) # Hj() such that

(,v) (ruv)=0, (4.3a)
(g, r w+( uw)=(f, w) (4.3b)

forall (v,w) 2 (L2()) 2 Htl)() .
De ne

! ©
Von(Th) = V2 (L2() ?:vik Ret2(Y, (4)2%8K2T), . (4.4)

The spectral element formulation of (4.3) is to nd (Qpp, Upp) 2 Vh,p(Th) (%,p(Th)\
Hcl,()) , S.t.

(Qh,pv Vh,p) (r Uh,pa Vh,p): 0, (4.5a)
(Qh,pv r Wh,p)+( Uh,paWh,p) :( f, Wh,p) (4-5b)

for all (Vi p,Whp) 2V, (Th)  (S,,(T\ H() -

Theorem 4.1. Letu and Y, , be the solutions of(4.3) and (4.5), respectively. If .2 Hé() \
H'() withr > 2, then

ku Uypk —CH 'p "kuk, , =01, (4.6)
where C is a positive constant independent affhand u.

Proof. Setv = r win (4.3) and vy, =1 Wy in (4.5). The resulted equation implies

( rurw+( uw)=(f,w), 8w 2 Hg() , (4.7a)
( r Uhyp,r Wh,p)+( Uh,p’Wh,p):( vah,p)! 8Wh,p2 Sﬂ,p(Th)\ Hé’() . (47b)
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Taking w = wy, , in (4.7a) and then subtracting (4.7b) from the resulted equa tion, we have
standard error equation

((rur Upp)r Wap)+( (U Upp)Whp))= 0, 8wpp2§, (Tp)\ Hg() . (4.8)

The proof can be completed by using the standard error analys technique with the inter-
polation estimate given by Theorem 3.2. f

4.2. Tensorial structure for ef cient implementation

Using the Lagrange nodal basis, we have

SRR XX
Qnplk; = QU mn(F " (X, ¥), Unpik = UD ma(FM(x,y)  (4.9)

m=0n=0 m=0n=0

for 8K; 2 Ty. Then the spectral element formulation (4.5) leads to the linear system
3 2 3

M o Cy 3 2QX 0
80 m ¢, £8q,5=908, (4.10)
C, C, M U F

where the global matrices M,Cy,Cy,M and righthand side F is obtained from the local

contributions (or elements) M(), ¢ ¢’ MW, F() by subassemblyThe unknown vectors
Qx, Qy, U consist of nodal values ofQ;, , and Uy, ,. Since the basis functions are construct-
ed by the tensor products of one-dimensional Lagrange basisunctions fh,,( ),h,( )g, we
expect to write the local matrices as the Kronecker productsof one dimensional local ma-
trices. Due to the usage of transform from rectangle to triangle, it is more complicate than
that of the QSEM as presented below.
To x the idea, we assume that (x) and (x) are piecewise constants and (x) =
i, (X)=;,8x 2 K;. De ne matrices

B=(®;), M=(k) €=(€) €=(§)

with
Z Z,
@;=  hOh()d, M= hOh() d, (4.11a)
z,' z,
€; = 1hi( ) )d , 8= 1hi( () d (4.11b)

and denote by
Gy = (Rt y), man=01, .p, (4.12)
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i.e., the restrictions of typical basis functions to a givenelement K;. Then

z
D (x,y) U (x,y)dxdy
=2jKjj  hm( )ha( )hpe( Yhpe( )I (1, )d d
f g
iK;j € S
=— Mo n0 Mo (1 )@ oMy o (4.13)

where the expression (2.8) of J is used. Similarly,

Z
Doy D (x, yydxdy
K ThO b )
o 1 1 mP@ n°
—ZJK,JJFKJZ f hm(Nn( 395 e oy )y @
=jK_jjJ 14 ( @mmo+(2 )€mo) M0 + lﬂmmO(ano+ €0 5 (4.14)
2 (1 )(Qmmo"' €nmo) Mnno+ M o(( l)bmno'i'(l"' )€qro) , |

by the expression (2.8) and (2.10). With the formulations (4 .13)-(4.14), the local contri-

butions (or elements) M), M@ ¢, C(yj), F() can be written in Kronecker products as
follows

JKj]

M = -+ 1< - I( N - N - N v DI - N I (4.15a)
cn=Xwg, e @im Do Ve (4.15b)
X 2 11 12 13 14 ’ )
L ST () () ()
C(yj) > 58+ € M+ m® 258+ € (4.15c)
MO = MO, FO = MOt (4.15d)

where f is the vector of interpolant nodal values of f (x) and
—_ ™
My, - 91 2
i )o 4= JFKj 1 1 1 1+ (4.16)
The formulation for F() results from the insertion of the interpolant of f(x) into the right
handside integration.

Remark 4.1. For general variable coef cients (x), (x), the coef cients are rstly ap-
proximated by LGL interpolation, see more details in[ 8] .
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The main advantage of the proposed triangular spectral elenent mixed formulation is
that it does not involve the stiffness matrix which consists of integral
z

ro O O dedp
Kj
Z ° < ° <
= 2jKij J.1o te JJtyte dd, 4.17
JK) ; Fy; mn Fy; mPn0 ( )
where € = (@, @)". Recalling (2.10), J ! has singularities in f and the singularity can
be removed by multiplying J . Therefore, the LGL quadrature can be used to calculate
integrals (4.13) and (4.14) but can not be used to calculate integral (4.17). Some analytic
means for the computation of (4.17) have been intensively studied by using mode basis (cf.
[23]). However, it seems to be not applicable to the case with geneal variable coef cients.

Here, LGL quadrature is used to calculate the entriesiﬂij , Mij , @ij , Q,J For example, we

actually set
XN XN

= OO e 8= hiCOh (W Kk (4.18)
k=0 k=0
in the numerical calculation. Since the nodal basis with respect to LGL points is adopted,
¥ and M become diagonal, i.e.,id = diag(! ,) and M = diag( ,! ). Together with the
Kronecker product formulation, we conclude that M and M are diagonal too. Therefore
Qx, Qy can be easily solved fromU and the linear system (4.10) reduces to

(CIM C,+ CIM 'Cy+ M )U=F. (4.19)

Noting that ®,, = M, for , = 1, there are zero entries on the diagonal of M/ due to
the usage of LGL quadéature. In particular for the two typical cases, we have

iKji

>—m1 | b, = 0,
YOEN

< jKij 1 1 1

e @ 2o @ 2@ @, =2

4 2 2 2

Itis not dif cultto nd outthat M) hasp+ 1 zero entries on the diagonal when = 0 and
has only one zero entry on the diagonal in the case = % The existance of zero entries
on the diagonal makes mass matrixM singular. Therefore the linear system (4.19) is not
available if LGL quadrature with p+ 1 points is used for the calculation of all entries of M.
It is evidence that Z, Z,

h2( )d & h2() d . (4.20)
1 1
Therefore, M, = Mpp is due to the fact that resolution of p+ 1 points LGL quadrature
is not enough to distinguish these two integrals. In order to overcome this dif culty, we
use Legendre-Gauss quadrature withp + 1 quadrature points for the special entry Mpp. By
improving the accuracy of M, the revised approximated mass matrixM () is not singular
and the linear system (4.19) is available.
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4.3. Numerical results

Now, we present some numerical examples to verify the accuray of the proposed T-
SEMs using two typical 4 7! f transforms (2.11) and (2.12). Both convergence rates
against polynomial degree p and mesh sizeh are presented. Complex domains with un-
structured meshes and non-smooth solutions are considered

In all numerical experiments, we test the elliptic problem (4.1) on various domains
with = €Y, = 1. Smooth exact solution:

u(x,y)= cog (x*+ y?)), (4.21)
and non-smooth exact solutions:

u(x, y)=(x+ y)?, (4.223)
U, y)= (X y)i(e + 1), (4.22b)

are tested.

Hereafter, we denote by E the L2-error of the numerical solution for xed mesh and
polynomial degree p, E, the L?-error for xed polynomial degree and mesh size h. All L2-
errors are calculated by using much higher order Gauss quadature element-by-element.
The convergence rates againsp are de ned as

nE, NEy, B I,

P« Pre1 Inpe INpgq’

which are the constantsc and r in the expected convergence rateO(e °P) and O(p ") for
smooth and non-smooth solutions, respectively. The convegence rate againsth is de ned

as
In Ehk In Ehk+1

Inh, Inhg,; "

Example 4.1. We rst test the accuracy of the proposed TSEMs by compared wh QSEM
on Cartesian mesh. For this purpose, we set = [ 0,1]? and the triangular meshes are
generated by subdividing each element in the correspondingCartesian meshes into two
tringles, see Fig. 5 for the initial meshes and correspondirg LGL-sepctral element nodes
distributions.

In this case, solution (4.22a) and (4.22b) have point and lin e singularity in the compu-
tational domain  and belong to H* and H® , respectively. L?-errors and correspond-
ing convergence rates presented in Tables 4.1 and 4.1, and i 6 show that QSEM and the
proposed TSEMs share very similar convergence behavior. Femooth solution (4.21) all
their errors decay like O(e °P) for xed mesh. Spectral accuracy is obtained for smooth
solution and optimal convergence rate is observed for non-snooth solutions. It is worthy
to point out that the obtained results also show that the TSEM using T,-, is more stable
than that using Tj.
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o i N ﬁ—\- \-

\ \ -‘\
(a) af ne mapping (b) mapping T,-, (c) mapping T,

Figure 5: Initial Cartesian and triangular meshes and LGlpectral element nodes distribution.

Table 1: L2-errors and convergence rates againgtfor xed mesh.

SEM TSEM using T, TSEM using T;-,
P error rate error rate error rate
4 | 2.218E-03 1.482E-03 9.440E-04

8 | 1.010E-06 | 1.924 | 7.168E-07 | 1.908 | 4.306E-07 | 1.923
12 | 1.340E-10 | 2.232 | 1.796E-10 | 2.073 | 4.686E-11 | 2.281
16 | 8.716E-15 | 2.410 | 4.430E-14 | 2.077 | 4.049E-14 | 1.763
4 | 9.142E-06 1.130E-05 7.274E-06
8 | 9.867E-08 | 6.534 | 8.855E-08 | 6.996 | 8.888E-08 | 6.355
12 | 6.961E-09 | 6.539 | 6.485E-09 | 6.447 | 6.499E-09 | 6.451
16 | 1.037E-09 | 6.618 | 9.833E-10 | 6.557 | 9.846E-10 | 6.560
20 | 2.337E-10 | 6.678 | 2.238E-10 | 6.632 | 2.241E-10 | 6.634
4 | 3.215E-04 1.722E-03 4.244E-04
8 | 2.803E-05 | 3.520 | 1.361E-04 | 3.661 | 3.203E-05 | 3.728
12 | 7.411E-06 | 3.281 | 3.620E-05 | 3.267 | 8.089E-06 | 3.394
16 | 2.926E-06 | 3.230 | 1.436E-05 | 3.213 | 3.124E-06 | 3.307
20 | 1.430E-06 | 3.209 | 7.045E-06 | 3.193 | 1.507E-06 | 3.267

smooth solution

non-smooth solution
(4.22a)

non-smooth solution
(4.22b)

Example 4.2. This example is to show the feasibility and accuracy of the poposed TSEMs
on complex domains with mixed and unstructured meshes. We casider two polygonal
domains: polygon A and polygon B with vertices given by:

1 1
polygon A: (0,0),(1,0), 2, 5 ,(1,1), 1,5 ,(0,1),
polygon B: R cos |+ cosg, sin  + sing , (4.23a)
R cos |+ 3cos§+ 35in§, sin |+ sing , k=0,1, ,7, (4.23b)
where | = ESENE %cosg. Polygon A is triangulated by hybrid meshes (with both
rectangle and triangle elements) and polygon B is triangulated by unstructured triangular
meshes, see Fig. 7 for initial meshes and spectral element ries distributions. Solution

(4.22a) and (4.22b) also have point and line singularity in t he computational domain
and belong to H* and H® |, respectively. The hybrid meshes used here are essentially
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Figure 6: Comparison of numerical errors between QSEM and TSEN(a), (b), (c): errors against p;
(d), (e), (f): errors against h).

different with that investigated in [17]. Their hybrid mesh actually has a hanging vertex.
The intersection of the triangular element with the neighbo ring rectangular element is not
an entire edge of the mesh. All hybrid meshes used in this papeare conformal without
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(a) Polygonal A (b) Polygonal B

Figure 7: Polygonal domains with mixed and unstructured miess.

Table 2: L2-errors and convergence rates againbstfor xed p= 6.

h SEM TSEM using T, TSEM usingT; -,
error rate error rate error rate
4.795E-05 5.587E-05 1.945E-05

4.967E-07 | 6.593 | 4.315E-07 | 7.016 | 1.962E-07 | 6.631
4.571E-09 | 6.764 | 3.582E-09 | 6.912 | 1.877E-09 | 6.708
3.691E-11 | 6.952 | 2.878E-11 | 6.960 | 1.523E-11 | 6.946
3.061E-13 | 6.914 | 2.459E-13 | 6.870 | 1.580E-13 | 6.591
6.378E-07 5.491E-07 5.518E-07
5.716E-08 | 3.480 | 4.885E-08 | 3.491 | 4.914E-08 | 3.489
5.089E-09 | 3.490 | 4.332E-09 | 3.495 | 4.359E-09 | 3.495
4514E-10 | 3.495 | 3.835E-10 | 3.498 | 3.860E-10 | 3.497
3.998E-11 | 3.497 | 3.393E-11 | 3.499 | 3.415E-11 | 3.499
7.407E-05 3.611E-04 8.822E-05
8.366E-06 | 3.146 | 4.023E-05 | 3.166 | 9.939E-06 | 3.150
9.352E-07 | 3.161 | 4.480E-06 | 3.167 | 1.110E-06 | 3.162
1.042E-07 | 3.165 | 4.986E-07 | 3.168 | 1.237E-07 | 3.166
1.161E-08 | 3.166 | 5.551E-08 | 3.167 | 1.378E-08 | 3.166

smooth solution

non-smooth solution
(4.22a)

non-smooth solution
(4.22b)

K3 [H5 [Heo 1H 10 1R [ HE, [Heo TH T 1HS | HE, [ Hieo THS 11 1H

any hanging points. That is the reason why we can have optimalconvergence rates here.
L2-errors and corresponding convergence rates against polyomial degree p and mesh size
h are presented in Tables 4.1-4.3 and Figs. 8-9. For smooth sation (4.21), errors using
different TSEMs decay likeO(e ©P) for xed mesh, i.e., spectral accuracy is obtained. On
the other hand, optimal convergence rates are observed for @n-smooth solutions. The
TSEM using T;-, shows some advantages over that usindl, in stability (see. Fig. 9: (c),
(f)). We make a comparison between the proposed TSEM and the BEM presented in[ 23].
L2-errors and convergence rates presented in Table 4.3 and Tdb 4.3 show that they share
similar accuracy performance. Table 4.3 compares the condion numbers of corresponding
resulted linear systems. Although TSEM usingT,-, has larger conditon number they are in
the same order with respect to p.
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Table 3: L2-errors and convergence rates againgtfor xed mesh (mixed mesh).

TSEM using T, TSEM using T;-,

P error rate error rate

8 4.066E-05 4.176E-05
smooth solution 12 2.840E-08 1.817 2.559E-08 1.849
16 6.171E-12 2.109 6.151E-12 2.083
20 3.515E-14 1.292 2.469E-14 1.380

8 | 9.8672008E-08 9.8672005E-08

non-smooth solution 12 | 6.9607996E-09 | 6.539 | 6.9608004E-09 | 6.539
(4.22a) 16 | 1.0369973E-09 | 6.618 | 1.0369977E-09 | 6.618
20 | 2.3365902E-10 | 6.678 | 2.3365938E-10 | 6.678

8 2.804E-05 2.803E-05
non-smooth solution 12 7.411E-06 3.281 7.411E-06 3.281
(4.22b) 16 2.926E-06 3.230 2.926E-06 3.230
20 1.430E-06 3.210 1.430E-06 3.209

Table 4: L2-errors and convergence rates againstfor xed p= 6 (mixed mesh).

TSEM using T,

TSEM usingT;-,

h
error rate error rate
7 | 1370E-05 1.324E-05

smooth solution > | 9.063E-08 | 7.240 | 8.685E-08 | 7.252
- | 7253E-10 | 6.965 | 6.841E-10 | 6.988
= | 5681E-12 | 6.996 | 5.334E-12 | 7.003

= | 5.71630E-08 5.71618E-08
non-smooth solution > | 5.08885E-09 | 3.490 | 5.08885E-09 | 3.490
(4.22a) == | 451442E-10 | 3.495 | 4.51442E-10 | 3.495
= | 4.01016E-11 | 3.493 | 3.99959E-11 | 3.497

| 8.37314E-06 8.36542E-06
non-smooth solution : | 9.35612E-07 | 3.162 | 9.35175E-07 | 3.161
(4.22b) - | 1.04269E-07 | 3.166 | 1.04245E-07 | 3.165
% | 1.16131E-08 | 3.166 | 1.16117E-08 | 3.166

4.4. Concluding remarks and future work

93

In this paper, we have introduced a new triangular spectral element method for un-
structured mesh by using a nodal basis and rectangle-triangge transforms. It is a mixed
formulation and fully enjoys the tensorial product propert y and exibility in handling com-
plex domains. Due to the exemption of the calculation of stiffness matrix, no singularity
appears in the generation of the discrete system. Arhp priori error estimate was presented
for the proposed method. The results obtained by this mixed brmulation is a good evi-
dence that discontinuous Galerkin methods based on mixed fomulation (e.g., LDG, HDG)
can be used to handle the singularity and node inconsistencysimultaneously. The devel-
opment of discontinuous triangular spectral element method based on mixed formulation

will be our future work.
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Table 5: L2-errors and convergence rates againgtfor xed mesh (unstructured triangular mesh).

TSEM using T, TSEM using T;-, TSEM in[23]

P error rate error rate error rate
8 | 5.225E-05 | 1.569 | 1.115E-05 | 1.794 | 9.264E-06 | 1.784
12 | 2.735E-08 | 1.889 | 1.391E-08 | 1.672 | 1.319E-08 | 1.639
16 | 3.076E-12 | 2.273 | 2.097E-12 | 2.200 | 2.095E-12 | 2.187
20 | 6.809E-13 | 0.377 | 2.620E-13 | 0.520 | 1.686E-13 | 0.630
8 | 8.746E-08 | 7.058 | 9.294E-08 | 5.700 | 9.248E-08 | 5.484
12 | 8.938E-09 | 5.625 | 1.051E-08 | 5.376 | 1.052E-08 | 5.360
16 | 1.804E-09 | 5.563 | 2.242E-09 | 5.371 | 2.253E-09 | 5.358
20 | 5.254E-10 | 5.527 | 6.748E-10 | 5.380 | 6.800E-10 | 5.368
8 | 1.472E-05 | 4.450 | 1.111E-05 | 3.587 | 1.118E-05 | 3.301
12 | 3.412E-06 | 3.606 | 2.816E-06 | 3.385 | 2.919E-06 | 3.312
16 | 1.619E-06 | 2.591 | 1.170E-06 | 3.054 | 1.156E-06 | 3.219
20 | 7.574E-07 | 3.405 | 5.781E-07 | 3.159 | 6.042E-07 | 2.908

smooth solution

non-smooth solution
(4.22a)

non-smooth solution
(4.22b)

Table 6: L2-errors and convergence rates againstfor xed p= 6 (unstructured triangular mesh).
TSEM using T, TSEM usingT;-, TSEM in[23]
error rate error rate error rate
1.409E-05 | 6.292 | 9.948E-06 | 5.306 | 9.505E-06 | 5.297
1.082E-07 | 7.024 | 7.039E-08 | 7.143 | 6.746E-08 | 7.138
8.179E-10 | 7.048 | 5.526E-10 | 6.993 | 5.322E-10 | 6.986
6.367E-12 | 7.005 | 4.350E-12 | 6.989 | 4.205E-12 | 6.984
7.120E-08 | 2.665 | 5.524E-08 | 2.999 | 5.472E-08 | 2.998
7.933E-09 | 3.166 | 6.911E-09 | 2.999 | 6.848E-09 | 2.998
1.046E-09 | 2.922 | 8.643E-10 | 2.999 | 8.567E-10 | 2.999
1.273E-10 | 3.039 | 1.089E-10 | 2.988 | 1.073E-10 | 2.997
3.136E-06 | 3.225 | 2.689E-06 | 3.204 | 2.643E-06 | 3.199
3.286E-07 | 3.255 | 2.846E-07 | 3.240 | 2.793E-07 | 3.242
4.782E-08 | 2.781 | 3.986E-08 | 2.836 | 3.958E-08 | 2.819
3.601E-09 | 3.731 | 2.813E-09 | 3.825 | 3.008E-09 | 3.718

>

smooth solution

non-smooth solution
(4.22a)

non-smooth solution
(4.22b)

8 [H5 [Heo 1Hs 1S [HE [Heo 1H 118 | Hs [ Heo - 1+

Table 7: A Comparison of condition numbers of TSEM using,-, and TSEM presented in [23] (un-
structured triangular mesh).

p | TSEMin[23] | TSEM usingT,- | ratio

4 8378 12514 1.494
6 37610 54453 1.448
8 112249 161924 1.443
10 264606 382459 1.445
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Figure 9: Numerical errors and convergence rates of TSEMs onstructured triangular meshes ((a),
(b), (c): errors against p; (d), (e), (f): errors against h).
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