Spectral Distribution in the Eigenvalues Sequence of Products of g-Toeplitz Structures

Eric Ngondiep^{1,*}

¹ Department of Mathematics and Statistics, College of Science, Al-Imam Muhammad Ibn Saud Islamic University (IMSIU), 90950 Riyadh 11632-Saudi Arabia

Received date 26 October 2017; Accepted (in revised version) date 2 July 2018

Abstract. Starting from the definition of an $n \times n$ g-Toeplitz matrix, $T_{n,g}(u) = [\hat{u}_{r-gs}]_{r,s=0}^{n-1}$, where g is a given nonnegative parameter, $\{\hat{u}_k\}$ is the sequence of Fourier coefficients of the Lebesgue integrable function u defined over the domain $\mathbb{T} = (-\pi, \pi]$, we consider the product of g-Toeplitz sequences of matrices $\{T_{n,g}(f_1)T_{n,g}(f_2)\}$, which extends the product of Toeplitz structures $\{T_n(f_1)T_n(f_2)\}$, in the case where the symbols $f_1, f_2 \in L^{\infty}(\mathbb{T})$. Under suitable assumptions, the spectral distribution in the eigenvalues sequence is completely characterized for the products of g-Toeplitz structures. Specifically, for $g \ge 2$ our result shows that the sequences $\{T_{n,g}(f_1)T_{n,g}(f_2)\}$ are clustered to zero. This extends the well-known result, which concerns the classical case (that is, g = 1) of products of Toeplitz matrices. Finally, a large set of numerical examples confirming the theoretic analysis is presented and discussed.

AMS subject classifications: 65F10, 15A18, 47B36, 47B65

Key words: Matrix sequences, *g*-Toeplitz, spectral distribution, eigenvalues, products of *g*-Toeplitz, clustering.

1. Introduction

Let f be a Lebesgue function defined on the interval $(-\pi, \pi]$. We recall that for a given nonnegative integer g, an $n \times n$ matrix $A_{n,g}$ is called g-Toeplitz if $A_{n,g} = [\hat{f}_{r-gs}]_{r,s=0}^{n-1}$. In this case, a g-Toeplitz matrix is denoted by $T_{n,g}(f)$ and the sequence $\{\hat{f}_k\}_k$ of entries of $T_{n,g}(f)$ can be interpreted as the sequence of Fourier coefficients of an integrable function f defined on \mathbb{T} . In this work we are motivated by the variety of fields where such matrices can be encountered, e.g., multigrid methods [14], wavelet analysis together with the subdivision algorithms, or equivalently, in the associated refinement equations, see [9, 10] and the references therein. Furthermore, interesting connections between dilation equations in the wavelets context and multigrid algorithms [14, 43] were proven by Gilbert Strang [39] when establishing the restriction/prolongation operators [1, 12] with boundary conditions.

http://www.global-sci.org/nmtma

© Global-Science Press

^{*}Corresponding author. *Email addresses:* ericngondiep@gmail.com, engondiep@imamu.edu.sa (E. Ngondiep)

The use of different boundary conditions is quite natural when treating with signal/image restoration problems or differential equations, see [27, 28].

We denote the usual Hilbert space of square-integrable functions over the circle $G = \{z \in \mathbb{C}, |z| = 1\}$ by $L^2(G)$, and let \mathscr{H}^2 be the Hardy space of functions belonging to $L^2(G)$, and whose the negative Fourier coefficients are equal to zero. Obviously, the subset G is isomorphic to the set \mathbb{T} , and the notation $G \cong \mathbb{T}$ means that both domains G and \mathbb{T} are isomorph. In the rest of this paper we sometimes use the domain G or \mathbb{T} , depending on the context. Let us define the g-Toeplitz operator $T_{f,g}$ with generating function f, as the operator

$$T_{f,g}: \mathscr{H}^2 \to \mathscr{H}^2,$$
$$u \mapsto P_{\sigma}(fu),$$

where P_g is the mapping from $L^2(G)$ onto \mathcal{H}^2 defined as

$$P_g(fu) := P^{\perp}(fu_g), \tag{1.1}$$

where $u_g \in \mathcal{H}^2$ completely depends on the parameter g and the function u. For example, if u is defined on \mathbb{T} by $u(t) = \exp(it)$, then the function u_g is given by

$$u_g(t) = \exp(igt), \quad \forall t \in \widehat{\mathbb{T}} = \left(-\frac{\pi}{g}, \frac{\pi}{g}\right].$$
 (1.2)

More specifically, $u_g = u \circ h_g$, where h_g is the map from $\widehat{\mathbb{T}}$ onto \mathbb{T} defined as $h_g(t) = gt$. Furthermore, P^{\perp} is the orthogonal projection from $L^2(G)$ onto \mathscr{H}^2 . It is worth noticing that such an operator, $T_{f,g}$, is bounded if and only if the symbol f is in the space of (essentially) bounded functions on the circle, and its infinite matrix, $T_g(f)$, in the canonical orthonormal basis $\mathscr{B} = \{1, z, z^2, \cdots\}$ is not (in general) constant along the diagonals, whenever g > 1. More specifically, the entries of $T_g(f)$ obey the rule $T_g(f) = [\widehat{f}_{r-gs}]_{r,s=1}^{\infty}$, where the entries \widehat{f}_k can be interpreted as the Fourier coefficients of the symbol f defined by

$$\hat{f}_{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) \exp(-ikt) dt.$$
(1.3)

Now, let $u \in L^1(\mathbb{T})$ and let n be a non-negative integer. By $T_{n,g}(u)$ we denote the $n \times n$ matrix $[\hat{u}_{r-gs}]_{r,s=1}^n$. It is not hard to prove that the sequence of operators on \mathcal{H}^2 , associated with the sequences $\{T_{n,g}(u)\}_{n=1}^{\infty}$, is an approximating sequence for the g-Toeplitz operator $T_{u,g}$, when $u \in L^{\infty}(G)$ (the space of (essentially) bounded functions on the circle), hence $\{T_{n,g}(u)\}_{n=1}^{\infty}$ is called a g-Toeplitz sequence. It is interesting to ask how the spectrum, $\Lambda_{n,g} = \{\lambda_1, \dots, \lambda_n\}$, of $T_{n,g}(u)$ is associated with the set of the eigenvalues of $T_g(u)$ if $u \in L^{\infty}(G)$, or even if $u \in L^1(G)$, to analyze the "spectral behavior" of the sequence of sets $\{\Lambda_{n,g}\}_{n=1}^{\infty}$ (or that of the sequence $\{\Gamma_{n,g}\}_{n=1}^{\infty}$, where $\Gamma_{n,g}$ represents the set of singular values of $T_{n,g}(u)$). When g = 1, $T_{n,1}(u)$ is nothing but the classical Toeplitz matrix $T_n(u)$, so an