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Abstract. Starting from the definition of an n× n g-Toeplitz matrix, Tn,g(u)=
�

bur−gs

�n−1

r,s=0,
where g is a given nonnegative parameter, {buk} is the sequence of Fourier coefficients of
the Lebesgue integrable function u defined over the domain T = (−π,π], we consider
the product of g-Toeplitz sequences of matrices {Tn,g( f1)Tn,g( f2)}, which extends the
product of Toeplitz structures {Tn( f1)Tn( f2)}, in the case where the symbols f1, f2 ∈
L∞(T). Under suitable assumptions, the spectral distribution in the eigenvalues se-
quence is completely characterized for the products of g-Toeplitz structures. Specifically,
for g ≥ 2 our result shows that the sequences {Tn,g( f1)Tn,g( f2)} are clustered to zero.
This extends the well-known result, which concerns the classical case (that is, g = 1) of
products of Toeplitz matrices. Finally, a large set of numerical examples confirming the
theoretic analysis is presented and discussed.
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1. Introduction

Let f be a Lebesgue function defined on the interval (−π,π]. We recall that for a given

nonnegative integer g, an n× n matrix An,g is called g-Toeplitz if An,g=
�

f̂r−gs

�n−1

r,s=0. In this

case, a g-Toeplitz matrix is denoted by Tn,g( f ) and the sequence { f̂k}k of entries of Tn,g( f )
can be interpreted as the sequence of Fourier coefficients of an integrable function f defined
on T. In this work we are motivated by the variety of fields where such matrices can be
encountered, e.g., multigrid methods [14], wavelet analysis together with the subdivision
algorithms, or equivalently, in the associated refinement equations, see [9, 10] and the
references therein. Furthermore, interesting connections between dilation equations in the
wavelets context and multigrid algorithms [14, 43] were proven by Gilbert Strang [39]
when establishing the restriction/prolongation operators [1,12] with boundary conditions.
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The use of different boundary conditions is quite natural when treating with signal/image
restoration problems or differential equations, see [27,28].

We denote the usual Hilbert space of square-integrable functions over the circle G =
{z ∈ C, |z|= 1} by L2(G), and letH 2 be the Hardy space of functions belonging to L2(G),
and whose the negative Fourier coefficients are equal to zero. Obviously, the subset G is
isomorphic to the set T, and the notation G ∼= T means that both domains G and T are
isomorph. In the rest of this paper we sometimes use the domain G or T, depending on
the context. Let us define the g-Toeplitz operator T f ,g with generating function f , as the
operator

T f ,g :H 2→H 2,

u 7→ Pg( f u),

where Pg is the mapping from L2(G) ontoH 2 defined as

Pg( f u) := P⊥( f ug), (1.1)

where ug ∈ H 2 completely depends on the parameter g and the function u. For example,
if u is defined on T by u(t) = exp(i t), then the function ug is given by

ug(t) = exp(i g t), ∀t ∈ bT=
�

−
π

g
,
π

g

�

. (1.2)

More specifically, ug = u ◦ hg , where hg is the map from bT onto T defined as hg(t) = g t.
Furthermore, P⊥ is the orthogonal projection from L2(G) ontoH 2. It is worth noticing that
such an operator, T f ,g , is bounded if and only if the symbol f is in the space of (essentially)
bounded functions on the circle, and its infinite matrix, Tg( f ), in the canonical orthonormal
basis B = {1, z, z2, · · · } is not (in general) constant along the diagonals, whenever g > 1.
More specifically, the entries of Tg( f ) obey the rule Tg( f ) =

�

f̂r−gs

�∞
r,s=1 , where the entries

f̂k can be interpreted as the Fourier coefficients of the symbol f defined by

f̂k =
1

2π

∫ π

−π
f (ei t)exp(−ikt)d t. (1.3)

Now, let u ∈ L1(T) and let n be a non-negative integer. By Tn,g(u) we denote the n × n
matrix

�

ûr−gs

�n
r,s=1 . It is not hard to prove that the sequence of operators onH 2, associated

with the sequences {Tn,g(u)}∞n=1, is an approximating sequence for the g-Toeplitz operator
Tu,g , when u ∈ L∞(G) (the space of (essentially) bounded functions on the circle), hence
{Tn,g(u)}∞n=1 is called a g-Toeplitz sequence. It is interesting to ask how the spectrum,
Λn,g = {λ1, · · · ,λn}, of Tn,g(u) is associated with the set of the eigenvalues of Tg(u) if
u ∈ L∞(G), or even if u ∈ L1(G), to analyze the "spectral behavior" of the sequence of sets
{Λn,g}∞n=1 (or that of the sequence {Γn,g}∞n=1, where Γn,g represents the set of singular values
of Tn,g(u)). When g = 1, Tn,1(u) is nothing but the classical Toeplitz matrix Tn(u), so an


