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Abstract. In this paper, we consider a stochastic parabolic Volterra equation driven by
the infinite dimensional fractional Brownian motion with Hurst parameter H € [%, 1).
We apply the piecewise constant, discontinuous Galerkin method to discretize this equa-
tion in the temporal direction. Based on the explicit form of the scalar resolvent function
and the refined estimates for the Mittag-Leffler function, we derive sharp mean-square
regularity results for the mild solution. The sharp regularity results enable us to obtain
the optimal error bound of the time discretization. These theoretical findings are finally
accompanied by several numerical examples.
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1. Introduction

In the last decades, numerical approximations of parabolic and hyperbolic stochastic
partial differential equations (SPDEs) have been extensively studied (see, e.g. monographs
[2,3,5,6,8,12,28-30, 34] and references therein). In contrast to the parabolic and hy-
perbolic SPDEs, stochastic Volterra equations (or fractional SPDEs) are much less well-
understood, from both theoretical and numerical points of view. In the present work, we
consider a stochastic parabolic Volterra equation (SPVE) driven by infinite dimensional
fractional noise with Hurst parameter H € [%, 1), described by

u(t)+ g, *Au(t)=Wg(t)+u0, te(0, T], (1.1)

where .

(a*b)(t):zf a(s)b(t—s)ds
0
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denotes the convolution of a and b and g,(t) serves as the fractional integral kernel e al)

The linear operator A is assumed to be self-adjoint, positive and densely defined in a Hilbert
space 5. Let (Q, Z,P) be a probability space and let {Wg (t)} be an infinite dimensional
fractional Brownian motion (fBm) with Hurst parameter H € [%, 1), as will be defined
in Section 2. The equation (1.1) can be regarded as the integral form of the following
fractional stochastic parabolic equation

du(t)+AD; " *u(t)dt = dW}'(¢t) for t € (0, T]
with u(0,-)=up(:) and 0<a<1. (1.2)

Here, Dtl_“ denotes the Riemann-Liouville fractional derivates with respect to t, defined by

I'(a)

with I'(-) being the Gamma function. When a — 1, the problem (1.2) reduces to the classi-
cal parabolic SPDE. The deterministic version of (1.2) occurs in a wide range of applications.
For example, it is used to describe diffusion in media with fractal geometry [23], relaxation
phenomena in complex viscoelastic materials [9], a non-Markovian diffusion process with
a memory [22] and so on. In addition, the numerical study of such a deterministic problem
can be found in a lot of literature, e.g., [13,16,18-20,32].

With Dtl_“ replaced by the left-sided Caputo fractional derivative a}—a:

_ a—1
DI%u(r) = 3tf E=9" ()ds, ae(0,1) (1.3)

1 t a—10
—— t— = ds, €(0,1),
o u(t)=4 "9 Jot=9) JGuslds, aco) (1.4)
Ne=h] fo(t —s)*“5uls)ds, ae€(1,2),
the problem (1.2) becomes another class of important fractional SPDEs:
du(t) + A5~ u(t)dt = dw/!(t) for t € (0, T]
with u(0,-) =uy(:) and 0 < a < 1. (1.5)

For (1.5) with a € (1,2) and H = 1/2, strong and weak approximation errors of finite ele-
ment discretizations have been rigorously analyzed in [14] and [15], respectively. Later on,
for a space-time white noise, sharper strong convergence rates of the time discretization and
of the full-discrete finite element method are shown in [11] and [10], respectively. How-
ever, we are not aware of any rigorous numerical analysis of (1.1) with fBm. This article
aims to fill the gap and to investigate the regularity properties and strong approximations
of SPVE (1.1).

In [7], the temporal regularity of stochastic convolutions arising in the mild solution
of (1.1) perturbed by a white noise was studied. A general version of (1.1) was consid-
ered in [33] and the existence and regularity results were established based on the explicit
formula for the scalar resolvent function and the properties of Mittage-Leffler’s function.
Sperlich [25] derived the optimal conditions for the existence of a unique mild solution of



