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Abstract. We study numerically the switching behavior aspects and calibration ef-

fects relative to finite media embedding fully a three-dimensional ferroelectric layer

in a paraelectric environment. Our approach makes use of the Ginzburg-Landau
formalism in combination with the electrostatics equations. The associated discrete

nonlinear system, which arises from finite element approximations, is solved by an
inexact Newton method. The resulting numerical experiments highlight the effects

of a balance between the physical and geometrical parameters. In particular, the

same state switchings can be retrieved from different ferroelectric layer sizes by act-
ing upon the physical characteristic of the paraelectric environment. Ferroelectric

platelet samples are in parallelepipedic and cylindrical configurations involved in

these experiments.
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1. Introduction

For performing a relevant numerical investigation of structures comprised of a fer-

roelectric layer embedded in a paraelectric environment, a method involving a descrip-

tion as accurate as possible of the interplay between the spontaneous polarization and

the long-range depolarization electric field caused by the same polarization is particu-

larly suitable. For a finite-size sample, the depolarization field is distributed in the inner

space and in the surrounding environment at the cost of an additional electrostatic en-

ergy. A notable property is that, even in the absence of the application of an external

field, this inner space can be organized into a finite number of distinct regions, called

the domains, in which the electric polarization is arranged uniformly [18]. Namely, the
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depolarization electric field splits the finite-size ferroelectric sample into polarization

domains.

Of course, when an external field is applied, the polarization domain patterning is

subject to a complex behavior; the system is then characterized by various ferroelectric

states. Recently, a work has been developed [13] to explicit how the Landau-Kittel

structure [7–9] of 180◦ polarization domains is formed in finite-scale nanodot samples.

In particular, it is highlighted in [13] that field and temperature applications allow to

realize a controllable multibit switching; an effect leading thus to the ability to increase

the volume of the writable information per nanodot. The approach used in [13] was

introduced by Chenskii and Tarasenko [3]. It consists of completing the model of

Ginzburg [5] that was based on the theory of phase transitions developed by Landau

[9], with the electrostatics equations, in order to take into account long-range Coulomb

interactions. This method, particularly suited to an accurate description of the interplay

aforementioned, has been used also in a two-dimensional context involving periodic

boundary conditions [10]. Moreover, it has been applied in the frame of certain three-

dimensional ferroelectric devices [12,13].

We deal here with this approach, and to dissociate the depolarization effects from

the lattice deformation impacts, we consider uniaxial ferroelectric materials for which

the ferroelastic coupling is small. In particular, in presence of such a material, the

dependence of the electric polarization field on the electric field is namely nonlinear

through only one of its components. Unlike in [13], where the simulations were as-

sociated with a cylindrical configuration and without an investigation of the influence

of geometrical parameters, we are concerned with numerical variations of geometrical

and physical parameters, moreover with the parallelepipedic configuration context. In

contrast with [12], where is also presented the model related to the mentioned ap-

proach, the interest is here devoted on the one hand to considerations that are above

all concrete as regards temperature applications too and on the other hand to a study of

calibration effects. This interest leads us to analyze here the influence of physical and

geometrical parameters, then both under concrete considerations of voltage potential

and temperature applications. The present work deals thus with extensive numerical

investigations for which the associated findings would aim at impregnating physical ex-

periments. In particular, reference is made here to physical experiments that could be

carried out by selecting, for instance, Sodium Nitrite (NaNO2) as the model material

for the ferroelectric layer [17].

This paper is subdivided in five sections. We consider in Section 2 a weak formu-

lation based on the Ginzburg-Landau formalism and electrostatics system, suitable for

uniaxial ferroelectric materials. In Section 3, we present the main algorithm that is

used for solving the discrete nonlinear system deriving from finite element discretiza-

tions of the weak formulation. This is an iterative algorithm that combines two inexact

Newton techniques. The first technique is an approach globalized with a linesearch

method [15], which slowly converges for a large choice of initializations, whereas the

second, a more standard one, converges faster but for a restricted choice of initializa-

tions. In Section 4, we develop an extensive study of the switching behavior aspects
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and calibration effects relative to finite media embedding fully a ferroelectric layer in

a paraelectric environment. Platelet samples in parallelepipedic and cylindrical config-

urations are considered. This study is achieved with respect to the temperature as well

as in terms of the external electric field, under variations of geometrical and physical

parameters. We report in Section 5 concluding remarks and perspectives.

2. Weak formulation based on the Ginzburg-Landau formalism and
electrostatics equations

We consider the weak formulation introduced in [11, 12] and associated with the

model presented also therein for the analysis of three-dimensional devices made up

of a ferroelectric layer that is fully embedded in a paraelectric environment. Let us

represent geometrically such a device with the help of an open bounded subset Ω of R3,

and its fully embedded layer by an open subset Ωf , Ωf ⊂ Ω, as well as its paraelectric

environment by Ωp = Ω \Ωf . Also, let us denote by S, S = ∂Ω, the boundary of Ω, and

by Sf , Sf = Ωf ∩ Ωp, the interface between Ωf and Ωp, as well as by ν = (νx, νy, νz)
T

the outward unit normal to Ωf , defined on Sf , where the superscript ”T” indicates the

transpose here and in the next sections.

The model was based on the Ginzburg-Landau formalism in combination with the

electrostatics equations. It consists of finding P : Ωf → R and ϕ : Ω → R such that

(EGL)


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








































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tP +

(

P

P0

)2

P −∇ · (ξ∇P ) +
κ‖

4π
∂zϕ = 0 in Ωf ,

−∇ · (ε∇ϕ) + 4π∂zP = 0 in Ωf ,

−∇ · (ε∇ϕ) = 0 in Ωp,

ϕ|Ωf
= ϕ|Ωp on Sf ,

ν ·
(

(ε∇ϕ)|Ωf
− (ε∇ϕ)|Ωp

)

− 4πνzP = 0 on Sf ,

ν · (ξ∇P ) = 0 on Sf ,

ϕ = ϕS on S,

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

where

• t is the reduced temperature, expressed via the Curie temperature T0 and the

temperature T of the device, t = (T − T0)/T0 ∈ [−1, 0);

• κ‖ is the displacive parameter (namely positive);

• P0 is the spontaneous polarization at low temperatures, P0 6= 0;

• ε is the permittivity tensor, considered as being symmetric;

• ξ is the coherence length tensor, also considered as being symmetric;

• ϕS is a given function.
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Called in the sequel, as in [12], the Electrostatic Ginzburg-Landau system and more

simply (EGL), this model is related to uniaxial ferroelectric devices; namely, the ones

for which the dependence of the electric polarization field, P, on the electric field, E,

is nonlinear through only one of its components (which is here the third one). More

precisely, we have

P =
1

4π
(εE −E) +





0
0
P



 in Ωf . (2.8)

The electric field derives from the scalar potential ϕ; namely, E = −∇ϕ.

The Eq. (2.1) involves the Ginzburg-Landau theory of phase transitions (recalling

that two phases, the paraelectric phase and the ferroelectric phase, are in association

with a ferroelectric body [8]). The relations (2.2) and (2.3) correspond to the electro-

statics equation ∇ ·D = 0 expressed in Ωf and Ωp respectively, where D is the electric

displacement field

D =























εE+







0

0

4πP






in Ωf ,

εE in Ωp.

At the ferroelectric/paraelectric interface Sf , the scalar potential ϕ satisfies the con-

tinuity condition (2.4), and the jump of the normal trace of D is equal to zero as

reports (2.5). Also, the scalar field P is subject to a Neumann condition and ϕ satisfies

a Dirichlet condition as relate (2.6) and (2.7), respectively.

We assume that each of the open subsets of R3 that are Ωf and Ω has a Lipschitz-

continuous boundary. Also, we consider the tensors ξ and ε, where

ξ = (ξi,j)1≤i,j≤3, ε = (εi,j)1≤i,j≤3,

in such a way that

∀ 1 ≤ i, j ≤ 3, ξi,j ∈ L∞(Ωf ), εi,j ∈ L∞(Ω), (2.9)

∃ ξ0 > 0 ∀ d = (d1, d2, d3)
T ∈ R

3,

3
∑

i,j=1

ξi,jdjdi ≥ ξ0

3
∑

i=1

d2i a.e. in Ωf , (2.10)

∃ ε0 > 0 ∀ d = (d1, d2, d3)
T ∈ R

3,
3
∑

i,j=1

εi,jdjdi ≥ ε0

3
∑

i=1

d2i a.e. in Ω. (2.11)

We set

W = H1(Ωf )×H1
0 (Ω),

and represent by ‖ · ‖W the norm defined on W , where

‖(P,ϕ)‖W =
(

‖P‖2H1(Ωf )
+ |ϕ|2H1(Ω)

) 1
2

for (P,ϕ) ∈W.
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As introduced in [12], with more details in [11], the weak formulation associated

with (EGL) consists of finding (P,ϕ) ∈W such that for (Q,ψ) ∈W

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
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



























∫

Ωf

tPQdx +

∫

Ωf

P 3

P 2
0

Qdx +

∫

Ωf

(ξ∇P ) · ∇Qdx +

∫

Ωf

κ‖

4π
(∂zϕ)Qdx

= −

∫

Ωf

κ‖

4π
(∂zw)Qdx,

∫

Ω
(ε∇ϕ) · ∇ψdx−

∫

Sf

4πνzPψdσ +

∫

Ωf

4π(∂zP )ψdx

= −

∫

Ω
(ε∇w) · ∇ψdx

(2.12)

(2.13)

with w considered in such a way that w ∈ H1(Ω) and w|S = ϕS , where ϕS ∈ H
1
2 (S).

Proposition 2.1. Let us consider t ≤ 0, P0 6= 0, κ‖ ≥ 0, as well as ξ and ε subject to

(2.9)-(2.11). Also, let w ∈ H1(Ω) be defined as above. Then, if (P,ϕ) ∈ W satisfies the

weak formulation (2.12) and (2.13), it follows that











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









tP +
P 3

P 2
0

−∇ · (ξ∇P ) +
κ‖

4π
∂z(ϕ+ w) = 0 in L2(Ωf ),

−∇ · (ε∇(ϕ+ w)) + 4π∂zP = 0 in L2(Ωf ),

−∇ · (ε∇(ϕ+ w)) = 0 in L2(Ωp).

(2.14)

(2.15)

(2.16)

Proof. Let (P,ϕ) ∈ W satisfy (2.12) and (2.13), under the considered assumptions.

Then it follows from [6] that P 3 ∈ L2(Ωf ). By denoting by 〈·, ·〉 the duality pairing

between the dual space D′(Ωf ) and D(Ωf ), we obtain from (2.12), with the notation

x = (x, y, z) =: (x1, x2, x3) and for all Q ∈ D(Ωf ), that
〈

tP +
P 3

P 2
0

, Q

〉

+
3
∑

i=1

〈

3
∑

j=1

ξi,j∂xj
P, ∂xi

Q

〉

+
〈κ‖

4π
∂zϕ,Q

〉

= −
〈κ‖

4π
∂zw,Q

〉

,

i.e.,
〈

tP +
P 3

P 2
0

−
3
∑

i,j=1

∂xi
(ξi,j∂xj

P ) +
κ‖

4π
∂zϕ,Q

〉

= −
〈κ‖

4π
∂zw,Q

〉

.

Thus,

tP +
P 3

P 2
0

−∇ · (ξ∇P ) +
κ‖

4π
∂zϕ = −

κ‖

4π
∂zw in D′(Ωf ),

and it follows then (2.14).

Also, with the same assumptions and notation, we obtain from (2.13), and for all ψ
with ψ|Ωf

∈ D(Ωf ), ψ|Ωp = 0, that:

3
∑

i=1

〈

3
∑

j=1

εi,j∂xj
ϕ, ∂xi

ψ

〉

+ 〈4π∂zP,ψ〉 = −
3
∑

i=1

〈

3
∑

j=1

εi,j∂xj
w, ∂xi

ψ

〉

,
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i.e.,
〈

−
3
∑

i,j=1

∂xi
(εi,j∂xj

ϕ) + 4π∂zP,ψ

〉

=

〈

3
∑

i,j=1

∂xi
(εi,j∂xj

w), ψ

〉

.

Thus,

−∇ · (ε∇(ϕ+ w)) + 4π∂zP = 0 in D′(Ωf ),

and we get (2.15).

In the same way, under these assumptions and by considering now ψ with ψ|Ωp ∈
D(Ωp), ψ|Ωf

= 0, in (2.13), it derives then (2.16).

Remark 2.1. If with the assumptions of Proposition 2.1 considering moreover the co-

efficients of the tensors ξ and ε as being regular, as well with w more regular, we

have that (P,ϕ) ∈ W satisfies (2.12) and (2.13), and P ∈ H2(Ωf ), ξi,j∂aP ∈ H1(Ωf )
for 1 ≤ i, j, a ≤ 3, where (∂1, ∂2, ∂3) := (∂x, ∂y, ∂z), it derives then the relation be-

low. Namely, we get in this case, by using the Green formula from (2.12) and for all

Q ∈ H1(Ωf ), that

∫

Ωf

tPQdx +

∫

Ωf

P 3

P 2
0

Qdx−

∫

Ωf

∇ · (ξ∇P )Qdx +

∫

Sf

ν · (ξ∇P )Qdσ

+

∫

Ωf

κ‖

4π
(∂zϕ)Qdx = −

∫

Ωf

κ‖

4π
(∂zw)Qdx.

By taking into account (2.14), it follows that

∫

Sf

ν · (ξ∇P )Qdσ = 0 for all Q ∈ H1(Ωf ).

It results then, under regularity of Sf also, that in this case ν · (ξ∇P ) = 0 in L2(Sf ).

Let us also mention that if, under the previous assumptions, (P,ϕ) ∈ W satisfies

(2.12) and (2.13), and (ϕ+w)|Ωf
∈ H2(Ωf ), (ϕ+w)|Ωp ∈ H2(Ωp), (εi,j∂a(ϕ+w))|Ωf

∈
H1(Ωf ), (εi,j∂a(ϕ+w))|Ωp ∈ H1(Ωp), then (P, φ) := (P,ϕ+w) is subject to (2.5) in the

following weak sense. Namely, we obtain from (2.13), and by using the Green formula,

that for all ψ ∈ H1
0 (Ω)

−

∫

Ωf

∇ · (ε∇(ϕ + w))ψdx +

∫

Sf

ν · (ε∇(ϕ+ w))|Ωf
ψdσ −

∫

Sf

4πνzPψdσ

+

∫

Ωf

4π(∂zP )ψdx−

∫

Ωp

∇ · (ε∇(ϕ+ w))ψdx−

∫

Sf

ν · (ε∇(ϕ + w))|Ωpψdσ = 0.

It follows then, by using (2.15) and (2.16), that

∫

Sf

(

ν ·
(

(ε∇φ)|Ωf
− (ε∇φ)|Ωp

)

− 4πνzP
)

ψ dσ = 0 for all ψ ∈ H1
0 (Ω).



Switching Behavior in Finite Media with 3D Ferroelectric-Paraelectric Interactions 119

Although in the applications the temperature T takes values in such a way that t ∈
[−1, 0), the statement below considers a broader context of this parameter. Established

in [12], this statement reports the existence of solutions of the formulation.

Theorem 2.1. Let us consider t ≤ 0, P0 6= 0, κ‖ ≥ 0, as well as ξ and ε subject to (2.9)-

(2.11). Furthermore, let ϕS ∈ H
1
2 (S) and w ∈ H1(Ω) such that w|S = ϕS . Then, there

exists a solution of the formulation (2.12) and (2.13).

Let us note that if (P,ϕ) verifies (2.12) and (2.13), then it follows that (P,ϕ + w)
is a weak solution of (EGL), and the (weak) electric polarization field P is determined

from (2.8), wherein E = −∇(ϕ+ w).

As specified also in [12], there is not a uniqueness of solution of the formulation for

any choice of the parameters. Namely for instance, if t < 0, P0 6= 0, κ‖ = 0, and ϕS = 0

(as well as w = 0), then two distinct pairs (P,ϕ), (−P,−ϕ), where P :=
√

|t||P0|,
satisfy (2.12) and (2.13); in addition to the fact that the pair (0, 0) is already subject to

(2.12) and (2.13) with these considerations.

3. Discretizations and algorithms

3.1. Discrete nonlinear system

We express here the nonlinear matrix system that arises from the discrete formu-

lation associated with (2.12) and (2.13). Namely, Ωf and Ω are considered as being

polyhedral. The discretizations, achieved as in [12], make use of a mesh of Ω and of

Lagrange finite elements. Such a mesh consists of a collection of tetrahedra, Th, result-

ing from a usual process of triangulation. In particular, for the non obvious geometrical

shapes, this mesh is fine enough near the boundaries of Ωf and Ω. The interface Sf
is entirely made up of faces of tetrahedra. Each of these faces is common both to

a tetrahedron contained in Ωf and to another one included in the environment Ωp. By

denoting by h the mesh size of Ω, let us consider the discrete space Wh

Wh = Xh × Yh

with

Xh =
{

Ph ∈ C0(Ωf );Ph|T ∈ P1,T ∀T ∈ Th, T ⊂ Ωf

}

,

Yh =
{

ϕh ∈ C0(Ω);ϕh|T ∈ P1,T ∀T ∈ Th, ϕh|S = 0
}

,

and P1,T the space of polynomials of degree less than or equal to 1, defined on T .

The discrete formulation associated with (2.12) and (2.13) consists of finding

(Ph, ϕh) ∈Wh such that for all (Qh, ψh) ∈Wh
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
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










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





















∫

Ωf

tPhQhdx +

∫

Ωf

P 3
h

P 2
0

Qhdx +

∫

Ωf

(ξ∇Ph) · ∇Qhdx +

∫

Ωf

κ‖

4π
(∂zϕh)Qhdx

= −

∫

Ωf

κ‖

4π
(∂zw)Qhdx,

∫

Ω
(ε∇ϕh) · ∇ψhdx−

∫

Sf

4πνzPhψhdσ +

∫

Ωf

4π(∂zPh)ψhdx

= −

∫

Ω
(ε∇w) · ∇ψhdx.

(3.1)

Conforming discretizations of the regions Ωf and Ω, as well as a conforming discretiza-

tion of the space W, are thus used; namely, Wh ⊂ W . By considering then the data t,
P0, κ‖, ξ, ε, and w related to ϕS , under the assumptions of Theorem 2.1, it arises that

the discrete formulation (3.1) has at least one solution. Let us specify that these data

will be so considered in what follows and in the next section. Also, as it was reported

for the case of the continuous formulation, let us indicate that there is not a uniqueness

of solution of the discrete formulation for any choice of data under these same assump-

tions. By dealing with any solution (Ph, ϕh) of this discrete formulation, we determine

the resulting discrete electric polarization in association with P by using (2.8), wherein

P is replaced by Ph and E by −∇(ϕh + w).
Let us denote by {xj ; 1 ≤ j ≤ N} the set of vertices of Th, numbered in such a way

that x1, . . . , xNf
∈ Ωf and x1, . . . , xN0 ∈ Ω, where Nf , N0 and N are respectively the

number of vertices in Ωf , Ω and Ω; namely, Nf < N0 < N . In what follows, Jj1, j2K
represents, with j1, j2 ∈ N and j1 < j2, the set of integers j such that: j1 ≤ j ≤ j2.

Let uj be the shape function associated with xj , for j ∈ J1, NK. We have thus, for

(Ph, ϕh) ∈Wh,

Ph =

Nf
∑

j=1

Pjuj , ϕh =

N0
∑

j=1

ϕjuj ,

where Pj ∈ R, for all j ∈ J1, Nf K, and ϕj ∈ R, for all j ∈ J1, N0K. The discrete

formulation (3.1) can then be written as a nonlinear matrix system having two vector

unknowns. It consists of finding P = (P1, . . . , PNf
)T ∈ R

Nf and Φ = (ϕ1, . . . , ϕN0)T ∈

R
N0

satisfying
{

AP +N (P) +BΦ = F1,

CP +DΦ = F2,
(3.2)

where

A =

(

∫

Ωf

(tujui + (ξ∇uj) · ∇ui)dx

)

(i,j)∈J1,Nf K2

,

B =

(

∫

Ωf

κ‖

4π
(∂zuj)uidx

)

(i,j)∈J1,Nf K×J1,N0K

,
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C =

(

−

∫

Sf

4πνzujuidσ +

∫

Ωf

4π(∂zuj)uidx

)

(i,j)∈J1,N0K×J1,Nf K

,

D =

(
∫

Ω
(ε∇uj) · ∇uidx

)

(i,j)∈J1,N0K2
,

N (P) =





∫

Ωf

1

P 2
0





Nf
∑

j=1

Pjuj





3

uidx





i∈J1,Nf K

,

F1 =

(

−

∫

Ωf

κ‖

4π
(∂zw)uidx

)

i∈J1,Nf K

,

F2 =

(

−

∫

Ω
(ε∇w) · ∇uidx

)

i∈J1,N0K

.

Let us mention already that, in the frame of numerical computations regarding the

experiments that will be involved in the next section, the terms of these blocks are

evaluated with the help of a 5-th order quadrature formula [20]. Of course, when the

tensors ε and ξ are constant in the geometrical elements and if w is in particular a

polynomial of degree less than or equal to 1, this becomes then an exact formula in the

associated evaluations. It will always be the case in the next section since ε and ξ will

be so used, as well as w from the considerations of ϕS , in accordance of course with

the applications.

3.2. Iterative algorithms

In order to solve the nonlinear matrix system (3.2), we consider an iterative method

from the combination of two inexact Newton approaches. The first one, represented

by Algorithm 3.1, is globalized with a linesearch technique [11, 15], and converges

slowly, for a large choice of initializations, whereas the second one, represented by

Algorithm 3.2, is more standard and converges faster but for a restricted choice of

initializations [4]. The GMRES algorithm [16], using a preconditioner based on an

incomplete LU factorization, is incorporated into each iteration.

In Algorithms 3.1 and 3.2, the cost function F , defined for x ∈ R
Nf+N0

, is such that

F (x) =

(

A B
C D

)

x +

(

N (xNf
)

0

)

−

(

F1

F2

)

∈ R
Nf+N0

,

where x = (xNf
|xN0)T , xNf

∈ R
Nf , xN0 ∈ R

N0
. Thus, determining a solution (P,Φ)

of (3.2) is equivalent to find x satisfying F (x) = 0, by considering the correspondences

xNf
≡ P and xN0 ≡ Φ.
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Algorithm 3.1 (Inexact quasi-Newton algorithm with search for a step-length parame-

ter α)

1. Let x := x0, where x0 is given. Evaluate F (x). If ‖F (x)‖2 ≈ 0, stop the algorithm

and return x;

2. Let k := 1;

3. Evaluate JF (x), and compute an approximate solution, δx, of the matrix equa-

tion JF (x)δx = −F (x), with the restarted GMRES algorithm (preconditioned

by an incomplete LU factorization), satisfying ‖F (x) + JF (x)δx‖2 ≤ η‖F (x)‖2,

where η := min{0.5, ‖F (x)‖2};

4. Compute α > 0:

4.1. Let α(0) := 1;

4.2. Evaluate f(x + α(0)δx), f(x) and ∇f(x). If f(x + α(0)δx) ≤ f(x) +
β1α

(0)∇f(x) · δx and ∇f(x + α(0)δx) · δx ≥ β2∇f(x) · δx, let α := α(0) and

go to Step 5;

4.3. Compute α(1) :=
‖F (x)‖22(α

(0))2

‖F (x + α(0)δx)‖22 + (2α(0) − 1)‖F (x)‖22
;

4.4. Evaluate f(x + α(1)δx). If f(x + α(1)δx) ≤ f(x) + β1α
(1)∇f(x) · δx and

∇f(x + α(1)δx) · δx ≥ β2∇f(x) · δx, let α := α(1) and go to Step 5;

4.5. Let j := 2;

4.6. Compute α(j) :=
−b+

√

b2 + 3a‖F (x)‖22
3a

, where

(

a
b

)

:=
1

α(j−1) − α(j−2)









1

(α(j−1))2
−

1

(α(j−2))2

−
α(j−2)

(α(j−1))2
α(j−1)

(α(j−2))2









×

(

f
(

x + α(j−1)δx
)

− f(x)− (∇f(x) · δx)α(j−1)

f
(

x + α(j−2)δx)− f(x
)

− (∇f(x) · δx)α(j−2)

)

;

4.7. Evaluate f(x + α(j)δx). If f(x + α(j)δx) ≤ f(x) + β1α
(j)∇f(x) · δx and

∇f(x + α(j)δx) · δx ≥ β2∇f(x) · δx, let α := α(j) and go to Step 5;

4.8. Update j := j + 1 and return to Substep 4.6;

5. Update x := x + αδx;

6. Update k := k + 1. If k is too large, stop the algorithm and return x;

7. Evaluate F (x). If ‖F (x)‖2 ≈ 0, and
‖F (x)‖2
‖F (x0)‖2

≈ 0, stop the algorithm and

return x;

8. Return to Step 3.
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Algorithm 3.2 (Inexact Newton algorithm)

1. Let x := x0, where x0 is given. Evaluate F (x). If ‖F (x)‖2 ≈ 0, stop the algorithm

and return x;

2. Let k := 1;

3. Evaluate JF (x), and compute an approximate solution, δx, of the matrix equa-

tion JF (x)δx = −F (x), with the restarted GMRES algorithm (preconditioned

by an incomplete LU factorization), satisfying ‖F (x) + JF (x)δx‖2 ≤ η‖F (x)‖2,

where η := min{0.5, ‖F (x)‖2};

4. Update x := x + δx;

5. Update k := k + 1. If k is too large, stop the algorithm and return x;

6. Evaluate F (x). If ‖F (x)‖2 ≈ 0, and
‖F (x)‖2
‖F (x0)‖2

≈ 0, stop the algorithm and

return x;

7. Return to Step 3.

Algorithm 3.2 is based on an inexact Newton technique that consists of finding

a sequence (xk)k≥0 converging to a zero of F . In the standard Newton method, at

each iteration k, the vector xk+1 is equal to xk + δxk, where δxk is the solution of the

matrix equation JF (xk)δxk = −F (xk), of course under the requirement that JF (xk), the

jacobian matrix related to F and evaluated at xk, is invertible. Here, by representing

by ‖ · ‖2 the euclidian norm on R
Nf+N0

, we consider rather an approximation of δxk
subject to the relation below

‖F (xk) + JF (xk)δxk‖2 ≤ ηk‖F (xk)‖2 (3.3)

with ηk = min{0.5, ‖F (xk)‖2}, ensuring the convergence of the algorithm [4].

In Algorithm 3.1, we deal with the function f defined for x ∈ R
Nf+N0

as follows:

f(x) =
1

2
‖F (x)‖22 ∈ R.

Every solution x, x ∈ R
Nf+N0

, of the equation F (x) = 0 satisfies

f(x) = min
{

f(y); y ∈ R
Nf+N0

}

.

We use a linesearch technique, which consists of finding a sequence (xk)k≥0 converging

to a minimum of f , with the help of a sequence of step lengths (αk)k≥0 such that, at

each iteration k, f(xk + αkδxk) is ”sufficiently smaller” than f(xk), where δxk satisfies

(3.3). More precisely, we assume that the Wolfe conditions [21] are satisfied

f(xk + αkδxk) ≤ f(xk) + β1αk∇f(xk) · δxk,

∇f(xk + αkδxk) · δxk ≥ β2∇f(xk) · δxk
(3.4)
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with 0 < β1 < β2 < 1, ensuring the convergence of the algorithm [15]. In order to find

such a suitable coefficient αk, we deal with a backtracking method [15]. Namely, we

use a sequence (α
(j)
k )j≥0 converging to a minimum of the function θk, defined for each

α ∈ R as

θk(α) = f(xk + αδxk) ∈ R.

We consider αk as being the first term α
(j⋆)
k of the sequence (α

(j)
k )j≥0 such that the

relations in (3.4) are satisfied by substituting therein the coefficient αk for α
(j⋆)
k . More

precisely, for building such a sequence, let us set α
(0)
k > 0, by considering for instance

α
(0)
k := 1. We compute α

(1)
k as being the minimum of a quadratic interpolation θquadk of

θk, defined for each α ∈ R as

θ
quad
k (α) =

α2

(α
(0)
k )2

(

θk(α
(0)
k )− θk(0)− α

(0)
k θ′k(0)

)

+ θ′k(0)α + θk(0).

Thus,

α
(1)
k = −

θ′k(0)(α
(0)
k )2

2
(

θk(α
(0)
k )− θk(0) − θ′k(0)α

(0)
k

)

=
‖F (xk)‖

2
2(α

(0)
k )2

‖F (xk + α
(0)
k δxk)‖

2
2 + (2α

(0)
k − 1)‖F (xk)‖

2
2

.

For j ≥ 2, α
(j)
k is chosen as being the (local) minimum of a cubic approximation θcubk of

θk, expressed for each α ∈ R as below

θcub
k (α) = aα3 + bα2 + θ′k(0)α + θk(0),

where

(

a
b

)

=
1

α
(j−1)
k − α

(j−2)
k











1

(α
(j−1)
k )2

−
1

(α
(j−2)
k )2

−
α
(j−2)
k

(α
(j−1)
k )2

α
(j−1)
k

(α
(j−2)
k )2











×

(

θk
(

α
(j−1)
k

)

− θk(0)− θ′k(0)α
(j−1)
k

θk
(

α
(j−2)
k

)

− θk(0)− θ′k(0)α
(j−2)
k

)

.

We consider thus, for j ≥ 2

α
(j)
k =

−b+
√

b2 − 3aθ′k(0)

3a
=

−b+
√

b2 + 3a‖F (xk)‖
2
2

3a
.



Switching Behavior in Finite Media with 3D Ferroelectric-Paraelectric Interactions 125

Algorithm 3.3 (Main algorithm)

1. Choose an initial datum x0 ∈ R
Nf+N0

;

2. Call Algorithm 3.1;

3. Update x0 := x, where x is the output of Algorithm 3.1;

4. Call Algorithm 3.2.

Algorithm 3.3 is performed for determining solutions of (3.2). It requires Algo-

rithm 3.1 as well as Algorithm 3.2, where we make in the implementation stage the

choice to evaluate numerically JF and ∇f at each point from their formal expressions,

as in [11]. An efficiency of this main algorithm was numerically observed in [11] from

investigations in a context not dedicated to applications in particular; namely, with the

considerations β1 = 10−4 and β2 = 10−1 that were suggested from [15].

Of course, by dealing with a framework where the expressions of theoretical solu-

tions are available, even without being related to a specific application, our numerical

inspections underline quantitatively the efficiency of this main algorithm.

As an example of this framework, let us consider that Ω and Ωf are polyhedral, and

shaped like two cylinders sharing the same center, namely the origin, and the same

axis which is (Oz). The radii of the “cylinders” represented by Ω and Ωf are fixed as

equal to 1.2 and 0.4, respectively. Moreover, the heights of these “cylinders” are fixed

as equal to 1.7 and 0.1, respectively. Also, let us consider

κ‖ = 10, P0 = 1, ξ = (ξi,j)1≤i,j≤3,

ε|Ωf
=
(

εfi,j

)

1≤i,j≤3
, ε|Ωp =

(

εpi,j

)

1≤i,j≤3
,

where ξi,j = εfi,j = εpi,j = 0 for 1 ≤ i 6= j ≤ 3. The other coefficients of these tensors are

ξ1,1 = ξ2,2 = ξ3,3 = 0.1, εf1,1 = εf2,2 = 10,

εp1,1 = εp2,2 = εp3,3 = εp > 0, εf3,3 = ε‖z > 0.

Let us set ϕS(x, y, z) = xy for (x, y, z)T ∈ S. Although by fixing ϕS in this way, it does

not refer to a concrete consideration with regard to the voltage potential applications,

a theoretical solution of (EGL) can be expressed. It follows in particular, when t = −1,

that (P,ϕ), where P (x, y, z) = 0 for (x, y, z)T ∈ Ωf , ϕ(x, y, z) = xy for (x, y, z)T ∈ Ω,

satisfies (EGL). Correlatively, (P, φ) is subject to (2.12) and (2.13), with φ = ϕ−w, and

w taken as in Theorem 2.1. Let us fix ε‖z = 0.1, εp = 10, and consider three meshes of Ω
achieved in accordance with Subsection 3.1. The first mesh involves 25 183 degrees of

freedom and is associated with h = h1 = 1.66 10−1 (which becomes equal to 7.31 10−2

under restriction to Ωf). The second mesh deals with 193 675 degrees of freedom and is

associated with h = h2 = 8.71 10−2 (which becomes equal to 4.44 10−2 under restriction
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to Ωf). The third mesh involves 1 499 982 degrees of freedom and is associated with

h = h3 = 4.79 10−2 (which becomes equal to 2.28 10−2 under restriction to Ωf).

Let us denoted by {x
(i)
k }1≤k≤N0(i) the set of internal vertices of the i-th mesh of Ω,

and consider

‖u‖
(i)
2 =





1

N0(i)

N0(i)
∑

k=1

∣

∣u(x
(i)
k )
∣

∣

2





1
2

,

for u : Ω −→ R, where i is fixed, 1 ≤ i ≤ 3. Also, for the discrete solution (P (i), ϕ(i))
associated with (P,ϕ) and obtained from the i-th mesh, let us denote by

err
(i)
2 =

∥

∥ϕ− ϕ(i)
∥

∥

(i)

2

‖ϕ‖
(i)
2

the error evaluated relatively to ϕ.

From an initialization of the main algorithm with (1, . . . , 1)T ∈ R
N0(i)

, after taking w
in accordance of course with Theorem 2.1 and here as a polynomial of degree equal to

2, we obtain that the values corresponding to err
(i)
2 are very negligible, namely, err

(1)
2 =

3.61 10−6%, err
(2)
2 = 7.62 10−7%, err

(3)
2 = 1.33 10−7%. The same observation arises

by considering several other choices for the initialization of this algorithm. It results

moreover that the values corresponding to the absolute errors about P , as regards then

Ωf , are also negligible.

Another example of the mentioned framework is the one where we consider t = −2,

with κ‖ 6= 0, ε‖z 6= εp again, by keeping the previous data for the other parameters.

Although by assigning such a value to t, which is not then related to a concrete con-

sideration with regard to the temperature applications, a theoretical solution of (EGL)

can be expressed; namely, when we set

ϕS(x, y, z) =
4π

ε‖z − εp
z, (x, y, z)T ∈ S.

It follows in particular with κ‖ = 1 that (P,ϕ), where

P (x, y, z) = 1, (x, y, z)T ∈ Ωf ,

ϕ(x, y, z) =
4π

ε‖z − εp
z, (x, y, z)T ∈ Ω,

satisfies (EGL). Correlatively, (P, φ) is subject to (2.12) and (2.13), with φ = ϕ − w,

and w taken as in Theorem 2.1.

By fixing ε‖z = 2, εp = 1, and considering the previous meshes of Ω, as well as

(0, . . . , 0)T ∈ R
N0(i)

for the initialization of the algorithm, with w here as a polyno-

mial of degree equal to 1, we obtain that the values corresponding to err
(i)
2 are very
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negligible too. The same observation derives from several other choices for the initial-

ization of this algorithm. Moreover, it arises that the values corresponding to the errors

determined similarly and relatively to P , as regards then Ωf , are also negligible here.

In addition to the efficiency of this algorithm on the quantitative aspect, let us

mention that our numerical inspections underline an associated approach which pro-

vides very satisfactory results from a qualitative point of view. Namely, with respect to

(small) values of the parameter h, the same types of transition jumps of solutions are

numerically provided for a same set of data associated with physical and geometrical

parameters. Let us fix κ‖ = 10, t = −20, ε‖z = 0.1, εp = 0.1, by keeping the previous

values for the other parameters, and consider the three previous meshes of Ω, where

of course hj < hi, for 1 ≤ i < j ≤ 3. As previously, this arbitrary value assigned to t is

however unrelated to a concrete consideration with regard to the temperature applica-

tions. With φ0 ∈ R, let us set ϕS(x, y, z) = −2z
H
φ0 for (x, y, z)T ∈ S, by indicating that

H = 1.7 is the height of the “cylinder” represented by Ω.

In contrast to the previous cases, the expressions of theoretical solutions are not

here available.

In addition to the above notation, let us consider ‖u‖
(i)
∞ = max1≤k≤N0(i) |u(x

(i)
k )|,

for u : Ω −→ R, where {x
(i)
k }1≤k≤N0(i) corresponds again to the set of internal vertices

of the i-th mesh of Ω, with i fixed, 1 ≤ i ≤ 3. For a discrete solution (P (i), ϕ(i))
obtained from the i-th mesh and a discrete solution (P (j), ϕ(j)) resulting from the

j-th mesh, which are associated with (EGL) and where 1 ≤ i < j ≤ 3, we deal with the

error between ϕ(j) and ϕ(i), evaluated relatively to ϕ(j). Let us then set

err
(i,j)
2 =

∥

∥ϕ(j) − ϕ(i)
∥

∥

(j)

2

‖ϕ(j)‖
(j)
2

, err(i,j)∞ =

∥

∥ϕ(j) − ϕ(i)
∥

∥

(j)

∞

‖ϕ(j)‖
(j)
∞

.

The results represented in Fig. 1 are related to the consideration U = 2φ0, from the

choice of ϕS (see also [11]). The function w, taken as in Theorem 2.1, is in particular

Figure 1: Semi-log representation of err
(i,j)
2 , err

(i,j)
∞ (1 ≤ i < j ≤ 3) with respect to U = 2φ0.
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here a polynomial of degree equal to 1. Various values are taken for φ0; this refers

to a variation of ϕS . These results concern the numerical values (not expressed in

percent) that are obtained for err
(i,j)
2 , err

(i,j)
∞ , from the three previous meshes.

The solutions arising from these meshes have the same profiles. Moreover, the tran-

sition jumps of solutions are associated with the same values of U . Also, the maximal

value of all the errors err
(i,j)
2 , err

(i,j)
∞ , for 1 ≤ i < j ≤ 3, remains of course small.

Similar results derive from the evaluations of errors about P (i). Namely, smaller values

are obtained in the determination of these errors associated with Ωf .

4. Numerical experiments

We are interested here in particular in developments which aim at impregnating

physical experiments. After describing the computational configurations, we investi-

gate the state switchings related to (2.1)-(2.7) as well as calibration effects based on

the numerical variations of parameters of this model.

4.1. Computational configurations

We distinguish two types of computational configurations. The first one is devoted

to cylindrical geometries while the second one is related to parallelepipedic geometries.

For the first type, Ωf and Ω are polyhedral and shaped like cylinders; they share the

same center, namely the origin, and the same axis, represented by (Oz). We denote

by Rf the radius and Hf the height of the “cylinder” represented by Ωf . In a similar

way, the radius and the height of the “cylinder” represented by Ω are denoted by R and

H, respectively. For the second type, Ωf and Ω are parallelepipedic. The mesh of Ω
associated with each configuration is achieved in accordance with the previous section.

Namely, we consider two reference configurations, dealing with volumes approximately

equal as well as with the same height as regards Ωf , and in association with the meshes

represented by:

• T
(1)
h , in the cylindrical frame with (Rf ,Hf ) = (8, 1.7) and (R,H) = (12, 17);

• T
(2)
h , in the parallelepipedic context, where

Ωf = [−Rf , Rf ]× [−Rf , Rf ]×

[

−
Hf

2
,
Hf

2

]

with thus (Rf ,Hf ) = (7.09, 1.7), and

Ω = [−R,R]× [−R,R]×

[

−
H

2
,
H

2

]

with (R,H) = (15, 30).
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Let us already mention that several values, for the mesh size h, have been used in

numerical experiments, relatively to each configuration. In the next subsections, the

results that will be presented derive, in the absence of any other explicit mention, from

experiments with the consideration h = 0.61, involving 485 621 degrees of freedom for

T
(1)
h and 1 121 858 in the frame of T

(2)
h . Correlatively, this mesh size becomes equal to

0.47 under restriction to Ωf .

Regarding the physical parameters, we consider for each computational configura-

tion, by denoting by I3 the 3× 3 identity tensor

ε|Ωf
=





10 0 0
0 5 0
0 0 1



 , ε|Ωp = εpI3,

εp = 90, ξ = I3, P0 = 1, κ‖ = 11.5. Let us already indicate, in particular, that variations

of the parameters Rf , Hf , t and εp will be performed in Subsection 4.3.

With φ0 ∈ R, we define ϕS as

(x, y, z) ∈ S 7−→ ϕS(x, y, z) =
H − 2z

H
φ0 − φ0 ∈ R

in such a way that ϕS(x, y,−
H
2 ) = φ0 and ϕS(x, y,

H
2 ) = −φ0. This is in association

with the voltage potential U applied to the device

U = 2φ0

as well as with the consideration of w in (3.1), as in (2.12) and (2.13), such that

w(x, y, z) =
H − 2z

H
φ0 − φ0

for (x, y, z)T ∈ Ω. Namely, w|S = ϕS .

In the next subsections, we will describe the numerical results, in each configura-

tion, through also the behavior of the discrete “average polarization”. This scalar field

is represented by Ph,

Ph =
1

|Ωf |

∫

Ωf

Phdx,

and arises from the finite element approximation of a state (P,ϕ) subject of course to

(EGL).

Although in the applications the reduced temperature t takes values in [−1, 0), as

reported in Section 2, we will be interested in the extended consideration where t ∈
[−1, 0].

4.2. Numerical study of state switchings

We make here use of a protocol presented in [11, 12] which is suitable for the

determination of non obvious states and incorporates also a process of ”heating” as
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well as of ”cooling” of a ferroelectric device. We initialize Algorithm 3.3 with random

vectors of size Nf + N0, distributed according to the uniform law of [−1, 1]Nf+N0
, as

well as with deterministic vectors.

We obtain several profiles; each one allowing us to identify the (discrete) states

(Ph, ϕh), namely subject to (EGL), and for which the polarization texture is similar.

Fig. 2 presents some of these profiles, resulting from T
(1)
h and T

(2)
h , with t = −0.9,

U = 0. They are distinguished by the shape and by the number of polarization domains

as being:

• Monodomain Profile (MP), case of a unique domain of polarization (see Figs. 2(a)

and 2(b));

• Concentric-cylindrical Profile (CP), context of a central domain shaped like a cy-

linder or distorted cylinder, surrounded by another domain (see Figs. 2(c) and

2(d));

• 2-Bands Profile (2BP), case of two domains, organized into bands (see Figs. 2(e)

and 2(f)).

In addition to these and in particular, the Obvious Profile, denoted by (OP) in the se-

quel, in correspondence to the case where Ph ≡ 0, arises from simulations performed

here, as well as the profile with four domains having a ”diamond” shape (see Fig. 3).

Note that some of the profiles obtained have already been observed in [13, 19], in-

cluding the 2-Bands Profile experimentally found in the case of a nanofilm of Lead

Titanate [19].

Each non obvious state of the device can be numerically submitted to a ”heating” or

a ”cooling” process. Namely, in order to compute a solution of (3.2) at the temperature

t+ δt, where δt ∈ R
⋆, we initialize Algorithm 3.3 with the help of a solution resulting

at the temperature t (see also [11] for more details).

Fig. 3 presents the results obtained from T
(2)
h , with respect to the temperature,

when we “heat up” (with δt = 10−3) or “cool down” (with δt = −10−3) several states,

for U = 0. While Ph depends continuously on the temperature, the distributions of

the polarization stay similar. In this study, a discontinuity corresponds to a change

of profile. For instance, (MP) exists for a range of small values taken by the reduced

temperature and jumps, under heating, to (CP) at t = −0.805. Such a transition is

qualified as irreversible since, by lowering the temperature from the new profile (here

(CP)), we do not find the first profile (namely (MP)). The next jumps, thus initiated by

(MP), are schematized as bellow

(MP) −→
t=−0.805

(CP) −→
t=−0.335

(2BP) −→
t=−0.307

(OP).

Here and in the next subsections, each jump corresponds to an irreversible transition.

Each profile persists below a maximal temperature, beyond which it disappears; this is

called the critical temperature of the profile. In this study, the profile having the highest
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(a)-(MP)

(b)-(MP)

(c)-(CP)

(d)-(CP)

(e)-(2BP)

(f)-(2BP)

Figure 2: Some profiles obtained from T
(1)
h ((a),(c),(e)) and T

(2)
h ((b),(d),(f)), with t = −0.9, U = 0.

At the left, a cross-section of Ph following (z = 0) is represented, whereas at middle and at the right, the
cross-sections of the discrete electric polarization, associated with P, following (y = 0) and (z = 0) are
respectively represented.
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Figure 3: Representation of Ph with respect to the reduced temperature, from T
(2)
h .

critical temperature, tc, is (2BP); namely, tc ≈ −0.307. Thus, tc corresponds to the

critical temperature of the material system.

This behavior, characteristic of ferroelectric devices [14], appears also in the con-

text of simulations from T
(1)
h . In particular, these same four profiles persist in this

context with similar temperature ranges and transitions; the most enduring profile

with nonzero polarization is also the one corresponding to (2BP). Each of the states

associated with (2BP) has a constant “average polarization”; namely, Ph ≡ 0.

Let us specify that the volume of the ferroelectric layer must be sufficiently small

when compared to the one of Ω, in order to avoid to disturb the emergent fringing field

(see, e.g., [13] and the references therein). Of course, as long as the volume of the fer-

roelectric layer does not appear however as too small, numerical instabilities will not

be involved; although the asymptotic framework developed by Ammari et al. [1] may

remedy the contrary situation. We already mention that we deal with a ferroelectric

layer for which the volume appears numerically as sufficiently small when compared

to the volume of Ω, but not too small, in each of the two reference configurations con-

sidered here. For instance in the context of T
(2)
h and as for an inspection, let us embed

successively the associated ferroelectric layer in two larger paraelectric environments,

by defining

Ω(3) ≡ Ω = [−15, 15] × [−15, 15] × [−15, 15],

Ω(2) = [−16, 16] × [−16, 16] × [−16, 16],

Ω(1) = [−17, 17] × [−17, 17] × [−17, 17].

Let us consider three meshes corresponding to triangulations of Ω(3), Ω(2) and Ω(1)

respectively, and having similar sizes approximately equal to 0.61, with correlatively, as

regards the ferroelectric layer, similar mesh sizes approximately equal to 0.47. These

meshes, built under the requirements of Subsection 3.1, involve respectively 1 121 858,

1 772 141 and 2 292 108 degrees of freedom. Of course, a unique ferroelectric/paraelec-
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tric interface is here represented. Let us denote by {x
(i)
k }1≤k≤N0(i) the set of internal

vertices of the mesh of Ω(i), where i is fixed, 1 ≤ i ≤ 3. For u : Ω(i) −→ R and 1 ≤ i ≤ 3,

let

‖u‖
(i)
2 =





1

N0(i)

N0(i)
∑

k=1

∣

∣u(x
(i)
k )
∣

∣

2





1
2

.

For a finite element approximation (P (i), ϕ(i)) obtained from Ω(i) and associated with

a state subject to (EGL) with ϕS = 0, we consider the following error

err
(i)
2 =

∥

∥ϕ(1) − ϕ(i)
∥

∥

(i)

2

‖ϕ(1)‖
(i)
2

evaluated relatively to ϕ(1). By inspecting the behavior of the profile (MP), with respect

to the reduced temperature, from t = −1 and with δt = 510−3, it follows, based on

Ω(i) (i = 2, 3), that the jump to (CP) occurs again, namely at t = −0.80. As it can be

observed for instance from the results represented in Fig. 4, the errors err
(i)
2 (i = 2, 3)

associated with the profile (MP), or (CP), are less than 1%. The similar evaluations of

errors about P (i) provide values which remain also smaller than 1%. The extension of

the present paraelectric environment related to Ω appears then numerically as without

particular significant influence. Let us indicate that a similar study has been done, by

obtaining relative errors now less than 6%, in the context of T
(1)
h . Also, let us mention

that the CPU time corresponding to one simulation (computation of (P (i), ϕ(i)) based

on Ω(i), 1 ≤ i ≤ 3) is approximately equal to 2h, 3h30 or 8h on an “Intel Xeon Processor

E5520 with a frequency of 2.27 GHz”, in the frame of Ω(3), Ω(2) or Ω(1) respectively.

Figure 4: Representation of the relative errors err
(2)
2 and err

(3)
2 with respect to the reduced temperature,

from parallelepipedic configurations with extensions of the paraelectric environment and vanishing boundary
voltage potentials.
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Figure 5: Hysteresis loops, for t = −0.9, from T
(2)
h .

We adopt for the numerical study of the existence of hysteresis loops a protocol

similar to the one involved above in the investigation of the polarization texture with

respect to the temperature. Namely, instead of variations of the temperature with a step

δt, we consider variations of U with a step δU (see [12] for more details).

Fig. 5 presents the numerical results obtained from the parallelepipedic configura-

tion, with t = −0.9 and δU = ±0.001. These results correspond to hysteresis loops. We

have, by increasing the voltage potential from U = −0.6, the switchings schematized

as below

(MP ) −→
U=0.062

(CP ) −→
U=0.314

(MP ).

These abrupt switchings are irreversible, and define a hysteresis branch. By decreasing

the voltage potential, from (MP) and U = 0.6, we observe the switchings represented

as follows

(MP ) −→
U=−0.062

(CP ) −→
U=−0.314

(MP ),

defining the second hysteresis branch, in a symmetric way to the first branch as regards

the origin. Thus, we get a hysteresis loop. Similarly, by decreasing the voltage potential

from (CP) and U & 0.062, the switching schematized as below arises

(CP ) −→
U=−0.052

(MP ).

This is an abrupt switching, leading us to underline the existence of another hysteresis

loop, called the ”local hysteresis loop” here and in the next subsections. It arises also

a second local hysteresis loop, symmetric to the previous one as regards the origin. It

follows then, in particular, the existence of several distinct states when U = 0; such

a multidomain switching opens new routes for the design of high-capacity nanosize

memory-storage devices in the ferroelectric-based nanoelectronics [13].

Similar results were obtained from T
(1)
h ; in particular, it arises also from this con-

figuration a ”global” hysteresis loop and two local hysteresis loops.
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Let us indicate that the numerical results obtained here do not deteriorate from

the considerations of some larger mesh sizes, in the cylindrical frame as well as in the

parallelepipedic context.

4.3. Calibration effects

We are here concerned with the numerical study of the influence of certain parame-

ters of the ferroelectric model by inspecting also how the associated critical temperature

can be adjusted. Let us already mention in particular that, as regards the geometrical

parameters, the related variations will not involve numerical instabilities, although the

framework developed in [1] may remedy such a situation as indicated in the previous

subsection. Of course, although sufficiently small when compared to the size of the

medium Ω, the size of the ferroelectric layer will not however appear as too small in

these variations that are in accordance with the applications context.

4.3.1. Influence of the parameters on the state switchings

We investigate here the influence of the size of the ferroelectric layer and of the per-

mittivity of the paraelectric environment, as regards the state switchings. This study

is based on variations of the geometrical parameter represented by the width, Rf , of

the ferroelectric layer as well as on variations of the physical parameter εp associated

with the permittivity of the paraelectric environment. We focus on the description of

investigations from states only related to the (MP) and (CP) profiles (which appear by

an increasing of U from low voltage potentials), in order to simplify the presentation

hereafter.

The numerical results associated with Fig. 6(a) are obtained in the context of cylin-

drical geometries with respect to Rf , and in terms of t, by fixing εp = 90, U = 0,

δt = 10−3. Several widths have been considered; namely, Rf = 1 + kδr, with δr =
510−1, 0 ≤ k ≤ 18. Each consideration of Rf corresponds then to a ”cylindrical con-

figuration” for which, systematically, the associated mesh size is approximately equal

to 0.61 for Ω and to 0.47 as regards Ωf . Different situations occur. For small values of

Rf , namely for the considerations defined as above and such that Rf ≤ 5.5, only the

(MP) profile exists. Then, for the ones which are such that 6 ≤ Rf ≤ 7.5, the (CP)

profile appears. A new type of switching occurs; namely, the switching of (MP) to (CP)

is smooth. Regarding the considerations where 8 ≤ Rf ≤ 9.5, the switching of (MP)

to (CP) is abrupt. In each of these situations, the transition temperature, tt, decreases

while Rf increases. For the largest value of Rf related to these considerations, i.e.,

Rf = 10, there exists only one profile; namely, the (CP) profile.

Fig. 6(b) presents, in the context of parallelepipedic geometries, the numerical re-

sults obtained from a similar study, with the same considerations for Rf , εp, U and

δt. Also, for each ”parallelepipedic configuration”, the associated mesh size is approx-

imately equal to 0.61 as regards Ω and to 0.47 about Ωf . Similar phenomena occur:

for these configurations where the width is such that Rf ≤ 5.5, only the (MP) profile
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(a) (b)

Figure 6: Representations of Ph with respect to the reduced temperature, for different values of Rf , from
cylindrical configurations (a) and parallelepipedic configurations (b). The mark ”◦” denotes states associated
with the (CP) profile, and the absence of this mark concerns states associated with the (MP) profile.

appears and then, for Rf ∈ {6, 6.5}, (MP) switches continuously to (CP). For the con-

siderations where 7 ≤ Rf ≤ 8, (MP) switches abruptly to (CP) and for the ones such

that Rf ≥ 8.5, only the (CP) profile exists.

Based on the same variations of Rf and for the same associated meshes, we have

investigated the existence of hysteresis loops from the cylindrical context, with t =
−0.9 and δU = ±10−3. Fig. 7(a) presents the numerical results deriving from this

investigation. Only abrupt transitions are obtained, and the (CP) profile does not exist

for any choice of Rf . There exist two types of loops:

• for the considerations such that Rf ≤ 5.5, there exists a switching of a state,

associated with the (MP) profile, to another one. Here, we denote by (1H-1P)

this type of obtained curve, in which only one hysteresis loop and a unique kind

of profile appear;

• for the considerations where Rf ≥ 6, jumps are obtained and schematized as

below

(MP ) −→
U=U⋆

(CP ) −→
U=U⋆⋆

(MP ),

where U⋆ and U⋆⋆ are two values, related namely to Rf . These are abrupt tran-

sitions, and there exist three hysteresis loops (the two local hysteresis loops that

arise in addition are not represented in Fig. 7(a) in order to not overload it). We

denote by (3H) this type of loops.

Similar results deriving from the parallelepipedic context, with the same consider-

ations for Rf , t and δU , are represented in Fig. 7(b). Again, only smooth transitions

and two types of hysteresis curves are obtained:
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(a) (b)

Figure 7: Hysteresis loops obtained for different values of Rf , with t = −0.9, from cylindrical configura-
tions (a) and parallelepipedic configurations (b). The mark ”◦” denotes states associated with the (CP)
profile, and the absence of this mark concerns states associated with the (MP) profile.

• for the considerations such that Rf ≤ 5.5, only the (MP) profile exists and we

deal with (1H-1P) curves;

• whereas for the ones corresponding to Rf ≥ 6, the (MP) and (CP) profiles appear,

so we get (3H) curves.

Let us now study the influence of the physical parameter εp. We consider a finite

sequence of values, εp = 10 + kδε, with δε = 10, 0 ≤ k ≤ 19. Also, we fix Rf = 8 for

the cylindrical configuration, and set Rf = 7.09 for the parallelepipedic configuration

in order to deal with ferroelectric layers of similar volumes in the two cases.

Fig. 8(a) presents, in the cylindrical context, the behavior of Ph with respect to t,
by fixing U = 0 and δt = 10−3. As previously in the study of variations of Rf , four

different situations occur. For the considerations of εp such that εp ≤ 70, only the (CP)

profile exists, then for the ones where 80 ≤ εp ≤ 110, (MP) switches abruptly to (CP)

whereas for the ones such that 120 ≤ εp ≤ 160, this switching is smooth. Finally, for

εp ≥ 170, there exists only the (MP) profile.

Fig. 8(b) presents, from the parallelepipedic context, the numerical results obtained

from a similar study, with the same considerations for εp, U and δt. The four situations

described above occur also. For the considerations where εp ≤ 70, there exists only the

(CP) profile. For εp ∈ {80, 90, 100}, the (MP) profile switches abruptly to (CP), then,

for the considerations such that 110 ≤ εp ≤ 160, the switching is smooth between these

two profiles, and finally, when εp ≥ 170, only the (MP) profile exists.

Fig. 9(a) presents, in association with these variations of εp, the results arising from

T
(1)
h and regarding the investigation of the existence of hysteresis loops, with t = −0.9

and δU = 10−3. Two new types of curves arise in addition to the two previous ones:
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(a) (b)

Figure 8: Representations of Ph with respect to the reduced temperature, for different values of εp, from

T
(1)
h (a) and T

(2)
h (b). The mark ”◦” denotes states associated with the (CP) profile, and the absence of

this mark concerns states associated with the (MP) profile.

• for εp ∈ {10, 20}, the transitions schematized as below, where U⋆ and U⋆⋆ are two

values related namely to εp,

(MP ) −→
U=U⋆

(CP ) −→
U=U⋆⋆

(MP )

are smooth. As a consequence, no hysteresis loop appears, and we denote by

(0H) this type of curve. This is a limiting case;

• for εp ∈ {30, 40, 50}, the (MP) and (CP) profiles appear and the first transition

(MP ) → (CP ) is smooth, whereas the second one, from a state associated with

(CP) to another one, is abrupt. Thus, there exists one hysteresis loop involving

two profiles. We denote by (1H-2P) this type of curve;

• for the considerations where 60 ≤ εp ≤ 130, the two transitions schematized as

follows, (MP ) → (CP ) → (MP ), are abrupt. The type of (3H) curves arises here

also;

• for the considerations corresponding to εp ≥ 140, the transition from a state

associated with (MP) to another one appears and we get again (1H-1P) curves.

As indicates Fig. 9(b), similar results arise from T
(2)
h , for t = −0.9 and δU = 10−3.

Namely, for εp ∈ {10, 20, 30}, (0H) curves are obtained, while the considerations εp ∈
{40, 50, 60} correspond to (1H-2P) curves; the considerations where 70 ≤ εp ≤ 110
lead to (3H) curves and the ones such that εp ≥ 120 provide (1H-1P) curves.
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(a) (b)

Figure 9: Hysteresis loops obtained for different values of εp, with t = −0.9, from T
(1)
h (a) and T

(2)
h (b).

The mark ”◦” denotes states associated with the (CP) profile, and the absence of this mark concerns states
associated with the (MP) profile.

Independently of the considered configurations, the same types of transitions under

the influence of the geometrical parameter Rf are retrieved also under the influence of

the physical parameter εp. Thus, if we deal with a small ferroelectric layer, the behavior

corresponding to the one of a larger layer can be obtained by acting on the permittivity

of the paraelectric environment: we are then concerned with a kind of material doping.

An aspect is that all the properties are not however perfectly preserved, since the critical

temperature seems to depend strongly on εp and much less on Rf ; an action on this

aspect will be investigated later.

We observed that the same diversity of classes of hysteresis loops was not found

from variations of Rf ; namely, (0H) and (1H-2P) curves were not found. Let us con-

sider other values of the temperature in order to prospect more.

Fig. 10 concerns the results arising from T
(1)
h and regarding the investigation of

the existence of hysteresis loops, with εp = 90 and δU = 10−3, for several values of

the temperature; namely, t = −0.05 − kδt, with δt = 10−1, 0 ≤ k ≤ 9. For these

considerations, we find the three types of curves described before. In the case where

t ≥ −0.25, only the (MP) profile appears, so we obtain (0H) curves. This result was

expected since it is found before that, for these values of parameters, the critical tem-

perature is −0.318; so, the material system is subject to its paraelectric phase. In the

case where t = −0.35, it is subject to its ferroelectric phase and the two profiles (MP)

and (CP) exist: the switching between these is smooth, and we thus obtain the type of

(0H) curves again. Then, for the considerations where −0.65 ≤ t ≤ −0.45, the switch-

ing between (MP) and (CP) is abrupt, and we thus have (1H-2P) curves. Finally, for

t ∈ {−0.75,−0.85,−0.95}, all the switchings are abrupt, and we obtain (3H) curves.
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Figure 10: Hysteresis loops obtained for different values of t, from T
(1)
h . The mark ”◦” denotes states

associated with the (CP) profile, and the absence of this mark concerns states associated with the (MP)
profile.

We are thus concerned with the same diversity of classes of hysteresis loops as in the

frame of the variations of εp.

4.3.2. Calibration of the critical temperature

We have observed in particular previously that the permittivity of the paraelectric en-

vironment seems to have a strong influence on the critical temperature of the material

system (see, e.g., Fig. 8). A similar influence was not noted from the variations of the

width of the ferroelectric layer (see, e.g., Fig. 6).

Here, we want to study how precisely the critical temperature, tc, behaves from

common variations of the paraelectric environment permittivity and of the height, Hf ,

of the ferroelectric layer. For this, we consider several values of the pair (εp,Hf ).
Namely, we set εp = 1 + k, with 0 ≤ k ≤ 9, as well as εp = 10 + 10k, with 0 ≤ k ≤ 19,

and take Hf ∈ {1.1, 1.4, 1.7, 2, 2.25, 2.5}, in the parallelepipedic context by fixing again

Rf = 7.09. For each consideration of (εp,Hf ), the behavior of the system with respect

to the temperature is studied. Each of the profiles obtained has a critical temperature,

determined by fixing also δt = 10−2, and it is of course retained that the largest one of

these temperatures denotes the critical temperature, tc, of the system. Let us specify

that, systematically, the critical temperature related to the (P2B) profile, existing in

each of the achieved experiments, is the largest one.

The obtained results are represented in Fig. 11, where the critical temperature is

reported with respect to εp and Hf . It derives that calibrations can be performed:

for instance, for reaching the critical temperature tc = −0.5, when the height of the

ferroelectric layer is such that Hf = 2.5, it is necessary to have for the paraelectric en-

vironment a permittivity such that εp ≈ 31. It is also possible to reach the same critical

temperature when the ferroelectric layer height is such that Hf = 1.4, by considering
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Figure 11: Numerical variation of the critical temperature with respect to εp, for different values of Hf from
the parallelepipedic configurations, and with U = 0.

now a paraelectric environment for which the permittivity is such that εp ≈ 54.

We find that tc depends on εp, but there is moreover a dependence on Hf : the

critical temperature increases with respect to the height Hf . The results represented

in Fig. 11 indicate that εp 7→ tc(εp) increases for εp taking large values, independently

of the considered values for Hf . Also, it occurs that tc increases slowly with respect to

these values of Hf and for each of the large values of εp. Similar results persist when

we reproduce entirely the study by taking now for instance Rf = 8. In particular, this

underlines the aspect already reported and relating that the parameter Rf does not

have a strong influence on the critical temperature.

Let us mention that similar results derive also from numerical experiments achieved

in the context of cylindrical configurations.

5. Concluding remarks and perspectives

From a variational method based on the Ginzburg-Landau formalism in combina-

tion with the electrostatics equations that was introduced in [11], we have numerically

investigated here the switching behavior aspects and calibration effects relative to fi-

nite media embedding fully a three-dimensional ferroelectric layer in a paraelectric

environment. The associated discrete nonlinear system, deriving from finite element

discretizations, is solved with the help of a described iterative approach that combines

two inexact Newton techniques. The first one, globalized with a linesearch method,

converges slowly for a large choice of initializations, whereas the second one, more

standard, converges faster but for a restricted choice of initializations.

The numerical investigations were performed by involving platelet samples in par-

allelepipedic and cylindrical configurations. In these investigations, the study of the

influence of geometrical and physical parameters was based on variations of the width

of the layer as well as on its height, and on variations of the paraelectric environment
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permittivity. Two switching types, namely related to smooth or abrupt state switchings,

as well as various hysteresis curves have been found. A particular property highlighted

here is that, independently of the considered configurations, a same switching behavior

under the influence of the ferroelectric layer width is retrieved from the influence of

the paraelectric environment permittivity. Namely, if we deal with a ferroelectric layer

of small size, the behavior corresponding to the one of a larger width can be retrieved

by acting upon the paraelectric environment permittivity. Moreover, and in particular,

we studied the behavior of the transition temperature, between the paraelectric and

ferroelectric phases, with respect to the paraelectric environment permittivity and to

the ferroelectric layer height. It is observed that by dealing with a ferroelectric layer of

small size, such a temperature in correspondence with a thicker layer can be retrieved

by acting upon the paraelectric environment permittivity. In particular, the associated

findings deriving from these investigations would aim at impregnating physical experi-

ments that could be achieved for instance with samples of Sodium Nitrite in the design

of the ferroelectric layer.

The perspectives of this work consider numerical investigations in the time depen-

dent context, by dealing again with a fully embedded ferroelectric layer. This context

shall require a model involving a three-dimensional physical region of interest which,

in contrast when compared for instance with the one studied from a theoretical point

of view in [2], is not represented alone by a ferroelectric material. These investigations

shall concern in particular the study of state switchings as well as of the existence of

hysteresis loops, also under the influence of the geometrical and physical parameters,

without excluding the long time consideration too.
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