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Abstract. We study numerically the switching behavior aspects and calibration ef-
fects relative to �nite media embedding fully a three-dimen sional ferroelectric layer
in a paraelectric environment. Our approach makes use of theGinzburg-Landau
formalism in combination with the electrostatics equation s. The associated discrete
nonlinear system, which arises from �nite element approxim ations, is solved by an
inexact Newton method. The resulting numerical experiments highlight the effects
of a balance between the physical and geometrical parameters. In particular, the
same state switchings can be retrieved from different ferroelectric layer sizes by act-
ing upon the physical characteristic of the paraelectric environment. Ferroelectric
platelet samples are in parallelepipedic and cylindrical con�gurations involved in
these experiments.

AMS subject classi�cations : 82D45, 82D80, 78A25, 35Q56, 47H10, 65N30, 49M15
Key words : Electroactive media, ferroelectricity, electrostatics, Ginzburg-Landau systems, �nite
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1. Introduction

For performing a relevant numerical investigation of structures comprised of a fer-
roelectric layer embedded in a paraelectric environment, a method involving a descrip-
tion as accurate as possible of the interplay between the spontaneous polarization and
the long-range depolarization electric �eld caused by the same polarization is particu-
larly suitable. For a �nite-size sample, the depolarization �eld is distributed in the inner
space and in the surrounding environment at the cost of an additional electrostatic en-
ergy. A notable property is that, even in the absence of the application of an external
�eld, this inner space can be organized into a �nite number of dist inct regions, called
the domains, in which the electric polarization is arranged uniformly [18] . Namely, the
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depolarization electric �eld splits the �nite-size ferroelect ric sample into polarization
domains.

Of course, when an external �eld is applied, the polarization dom ain patterning is
subject to a complex behavior; the system is then characterized by various ferroelectric
states. Recently, a work has been developed [13] to explicit how the Landau-Kittel
structure [7–9] of 180� polarization domains is formed in �nite-scale nanodot samples.
In particular, it is highlighted in [13] that �eld and temper ature applications allow to
realize a controllable multibit switching; an effect leading th us to the ability to increase
the volume of the writable information per nanodot. The approach used in [13] was
introduced by Chenskii and Tarasenko [3]. It consists of completing the model of
Ginzburg [5] that was based on the theory of phase transitions developed by Landau
[9], with the electrostatics equations, in order to take into acc ount long-range Coulomb
interactions. This method, particularly suited to an accurate description of the interplay
aforementioned, has been used also in a two-dimensional context involving periodic
boundary conditions [10]. Moreover, it has been applied in the frame of certain three-
dimensional ferroelectric devices [12,13].

We deal here with this approach, and to dissociate the depolarization effects from
the lattice deformation impacts, we consider uniaxial ferroelectric materials for which
the ferroelastic coupling is small. In particular, in presence of such a material, the
dependence of the electric polarization �eld on the electric �el d is namely nonlinear
through only one of its components. Unlike in [13], where the simulat ions were as-
sociated with a cylindrical con�guration and without an investig ation of the in�uence
of geometrical parameters, we are concerned with numerical variations of geometrical
and physical parameters, moreover with the parallelepipedic con�guration context. In
contrast with [12], where is also presented the model related to the mentioned ap-
proach, the interest is here devoted on the one hand to considerations that are above
all concrete as regards temperature applications too and on the other hand to a study of
calibration effects. This interest leads us to analyze here thein�uence of physical and
geometrical parameters, then both under concrete considerationsof voltage potential
and temperature applications. The present work deals thus with extensive numerical
investigations for which the associated �ndings would aim at imp regnating physical ex-
periments. In particular, reference is made here to physicalexperiments that could be
carried out by selecting, for instance, Sodium Nitrite (NaNO2) as the model material
for the ferroelectric layer [17].

This paper is subdivided in �ve sections. We consider in Section 2a weak formu-
lation based on the Ginzburg-Landau formalism and electrostatics system, suitable for
uniaxial ferroelectric materials. In Section 3, we present the main algorithm that is
used for solving the discrete nonlinear system deriving from �nit e element discretiza-
tions of the weak formulation. This is an iterative algorithm that combines two inexact
Newton techniques. The �rst technique is an approach globalized with a linesearch
method [15], which slowly converges for a large choice of initializations , whereas the
second, a more standard one, converges faster but for a restricted choice of initializa-
tions. In Section 4, we develop an extensive study of the switching behavior aspects
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and calibration effects relative to �nite media embedding full y a ferroelectric layer in
a paraelectric environment. Platelet samples in parallelepipedic and cylindrical con�g-
urations are considered. This study is achieved with respect to the temperature as well
as in terms of the external electric �eld, under variations of ge ometrical and physical
parameters. We report in Section 5 concluding remarks and perspectives.

2. Weak formulation based on the Ginzburg-Landau formalism and
electrostatics equations

We consider the weak formulation introduced in [11, 12] and associated with the
model presented also therein for the analysis of three-dimensional devices made up
of a ferroelectric layer that is fully embedded in a paraelectric environment. Let us
represent geometrically such a device with the help of an open bounded subset
 of R3,
and its fully embedded layer by an open subset
 f , 
 f � 
 , as well as its paraelectric
environment by 
 p = 
 n
 f . Also, let us denote byS, S = @
 , the boundary of 
 , and
by Sf , Sf = 
 f \ 
 p, the interface between 
 f and 
 p, as well as by� = ( � x ; � y ; � z)T

the outward unit normal to 
 f , de�ned on Sf , where the superscript " T" indicates the
transpose here and in the next sections.

The model was based on the Ginzburg-Landau formalism in combination with the
electrostatics equations. It consists of �nding P : 
 f ! R and ' : 
 ! R such that

(EGL )

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

tP +
�

P
P0

� 2

P � r � (� r P) +
{ k

4�
@z ' = 0 in 
 f ;

�r � (" r ' ) + 4 �@zP = 0 in 
 f ;

�r � (" r ' ) = 0 in 
 p;

' j
 f = ' j
 p on Sf ;

� �
�
(" r ' )j
 f � (" r ' )j
 p

�
� 4�� zP = 0 on Sf ;

� � (� r P) = 0 on Sf ;

' = ' S on S;

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

where

� t is the reduced temperature, expressed via the Curie temperature T0 and the
temperature T of the device, t = ( T � T0)=T0 2 [� 1; 0);

� { k is the displacive parameter (namely positive);

� P0 is the spontaneous polarization at low temperatures,P0 6= 0 ;

� " is the permittivity tensor, considered as being symmetric;

� � is the coherence length tensor, also considered as being symmetric;

� ' S is a given function.
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Called in the sequel, as in [12], the Electrostatic Ginzburg-Landau systemand more
simply (EGL), this model is related to uniaxial ferroelectric devices; namely, the ones
for which the dependence of the electric polarization �eld, P, on the electric �eld, E,
is nonlinear through only one of its components (which is here the thi rd one). More
precisely, we have

P =
1

4�
("E � E) +

0

@
0
0
P

1

A in 
 f : (2.8)

The electric �eld derives from the scalar potential ' ; namely, E = �r ' .
The Eq. (2.1) involves the Ginzburg-Landau theory of phase transitions (recalling

that two phases, the paraelectric phaseand the ferroelectric phase, are in association
with a ferroelectric body [8]). The relations (2.2) and (2.3) corr espond to the electro-
statics equation r � D = 0 expressed in
 f and 
 p respectively, whereD is the electric
displacement �eld

D =

8
>>>><

>>>>:

"E +

0

B
@

0

0

4�P

1

C
A in 
 f ;

"E in 
 p:

At the ferroelectric/paraelectric interface Sf , the scalar potential ' satis�es the con-
tinuity condition (2.4), and the jump of the normal trace of D is equal to zero as
reports (2.5). Also, the scalar �eld P is subject to a Neumann condition and' satis�es
a Dirichlet condition as relate (2.6) and (2.7), respectively.

We assume that each of the open subsets ofR3 that are 
 f and 
 has a Lipschitz-
continuous boundary. Also, we consider the tensors� and ", where

� = ( � i;j )1� i;j � 3; " = ( " i;j )1� i;j � 3;

in such a way that

8 1 � i; j � 3; � i;j 2 L 1 (
 f ); " i;j 2 L 1 (
) ; (2.9)

9 � 0 > 0 8 d = ( d1; d2; d3)T 2 R3;
3X

i;j =1

� i;j dj di � � 0

3X

i =1

d2
i a.e. in 
 f ; (2.10)

9 "0 > 0 8 d = ( d1; d2; d3)T 2 R3;
3X

i;j =1

" i;j dj di � "0

3X

i =1

d2
i a.e. in 
 : (2.11)

We set
W = H 1(
 f ) � H 1

0(
) ;

and represent byk � kW the norm de�ned on W , where

k(P; ' )kW =
�

kPk2
H 1 (
 f ) + j' j2H 1 (
)

� 1
2 for (P; ' ) 2 W:
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As introduced in [12], with more details in [11], the weak formul ation associated
with (EGL) consists of �nding (P; ' ) 2 W such that for (Q;  ) 2 W

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Z


 f

tP Qdx +
Z


 f

P3

P2
0

Qdx +
Z


 f

(� r P) � r Qdx +
Z


 f

{ k

4�
(@z ' )Qdx

= �
Z


 f

{ k

4�
(@zw)Qdx;

Z



(" r ' ) � r  dx �

Z

Sf

4�� zP d� +
Z


 f

4� (@zP) dx

= �
Z



(" r w) � r  dx

(2.12)

(2.13)

with w considered in such a way thatw 2 H 1(
) and wjS = ' S, where ' S 2 H
1
2 (S).

Proposition 2.1. Let us considert � 0, P0 6= 0 , { k � 0, as well as� and " subject to
(2.9) -(2.11) . Also, letw 2 H 1(
) be de�ned as above. Then, if(P; ' ) 2 W satis�es the
weak formulation (2.12) and (2.13) , it follows that

8
>>>>><

>>>>>:

tP +
P3

P2
0

� r � (� r P) +
{ k

4�
@z(' + w) = 0 in L 2(
 f );

�r � (" r (' + w)) + 4 �@zP = 0 in L 2(
 f );

�r � (" r (' + w)) = 0 in L 2(
 p):

(2.14)

(2.15)

(2.16)

Proof. Let (P; ' ) 2 W satisfy (2.12) and (2.13), under the considered assumptions.
Then it follows from [6] that P3 2 L 2(
 f ). By denoting by h�; �i the duality pairing
between the dual spaceD0(
 f ) and D(
 f ), we obtain from (2.12), with the notation
x = ( x; y; z) =: ( x1; x2; x3) and for all Q 2 D (
 f ), that

*

tP +
P3

P2
0

; Q

+

+
3X

i =1

*
3X

j =1

� i;j @x j P; @x i Q

+

+
D{ k

4�
@z '; Q

E
= �

D{ k

4�
@zw; Q

E
;

i.e., *

tP +
P3

P2
0

�
3X

i;j =1

@x i (� i;j @x j P) +
{ k

4�
@z '; Q

+

= �
D{ k

4�
@zw; Q

E
:

Thus,

tP +
P3

P2
0

� r � (� r P) +
{ k

4�
@z ' = �

{ k

4�
@zw in D0(
 f );

and it follows then (2.14).
Also, with the same assumptions and notation, we obtain from (2.13), and for all  

with  j
 f 2 D (
 f ),  j
 p = 0 , that:

3X

i =1

*
3X

j =1

" i;j @x j '; @x i  

+

+ h4�@zP;  i = �
3X

i =1

*
3X

j =1

" i;j @x j w; @x i  

+

;
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i.e., *

�
3X

i;j =1

@x i (" i;j @x j ' ) + 4 �@zP;  

+

=

*
3X

i;j =1

@x i (" i;j @x j w);  

+

:

Thus,
�r � (" r (' + w)) + 4 �@zP = 0 in D0(
 f );

and we get (2.15).
In the same way, under these assumptions and by considering now with  j
 p 2

D(
 p),  j
 f = 0 , in (2.13), it derives then (2.16).

Remark 2.1. If with the assumptions of Proposition 2.1 considering moreover the co-
ef�cients of the tensors � and " as being regular, as well with w more regular, we
have that (P; ' ) 2 W satis�es (2.12) and (2.13), and P 2 H 2(
 f ), � i;j @aP 2 H 1(
 f )
for 1 � i; j; a � 3, where (@1; @2; @3) := ( @x ; @y ; @z), it derives then the relation be-
low. Namely, we get in this case, by using the Green formula from (2.12) and for all
Q 2 H 1(
 f ), that

Z


 f

tP Qdx +
Z


 f

P3

P2
0

Qdx �
Z


 f

r � (� r P)Qdx +
Z

Sf

� � (� r P)Qd�

+
Z


 f

{ k

4�
(@z ' )Qdx = �

Z


 f

{ k

4�
(@zw)Qdx:

By taking into account (2.14), it follows that
Z

Sf

� � (� r P)Qd� = 0 for all Q 2 H 1(
 f ):

It results then, under regularity of Sf also, that in this case� � (� r P) = 0 in L 2(Sf ).
Let us also mention that if, under the previous assumptions, (P; ' ) 2 W satis�es

(2.12) and (2.13), and (' + w)j
 f 2 H 2(
 f ), (' + w)j
 p 2 H 2(
 p), (" i;j @a(' + w)) j
 f 2
H 1(
 f ), (" i;j @a(' + w)) j
 p 2 H 1(
 p), then (P; � ) := ( P; ' + w) is subject to (2.5) in the
following weak sense. Namely, we obtain from (2.13), and by using the Green formula,
that for all  2 H 1

0(
)

�
Z


 f

r � (" r (' + w))  dx +
Z

Sf

� � (" r (' + w)) j
 f  d� �
Z

Sf

4�� zP d�

+
Z


 f

4� (@zP) dx �
Z


 p

r � (" r (' + w))  dx �
Z

Sf

� � (" r (' + w)) j
 p  d� = 0 :

It follows then, by using (2.15) and (2.16), that
Z

Sf

�
� �

�
(" r � )j
 f � (" r � )j
 p

�
� 4�� zP

�
 d� = 0 for all  2 H 1

0(
) :
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Although in the applications the temperature T takes values in such a way thatt 2
[� 1; 0), the statement below considers a broader context of this parameter.Established
in [12], this statement reports the existence of solutions of the formulation.

Theorem 2.1. Let us considert � 0, P0 6= 0 , { k � 0, as well as� and " subject to(2.9) -

(2.11) . Furthermore, let ' S 2 H
1
2 (S) and w 2 H 1(
) such thatwjS = ' S. Then, there

exists a solution of the formulation(2.12) and (2.13) .

Let us note that if (P; ' ) veri�es (2.12) and (2.13), then it follows that (P; ' + w)
is a weak solution of (EGL), and the (weak) electric polarization �e ld P is determined
from (2.8), wherein E = �r (' + w).

As speci�ed also in [12], there is not a uniqueness of solution of the formulation for
any choice of the parameters. Namely for instance, ift < 0, P0 6= 0 , { k = 0 , and ' S = 0
(as well as w = 0), then two distinct pairs (P; ' ), (� P; � ' ), where P :=

p
jt jjP0j,

satisfy (2.12) and (2.13); in addition to the fact that the pai r (0; 0) is already subject to
(2.12) and (2.13) with these considerations.

3. Discretizations and algorithms

3.1. Discrete nonlinear system

We express here the nonlinear matrix system that arises from thediscrete formu-
lation associated with (2.12) and (2.13). Namely, 
 f and 
 are considered as being
polyhedral. The discretizations, achieved as in [12], make use ofa mesh of 
 and of
Lagrange �nite elements. Such a mesh consists of a collection of tetrahedra, Th, result-
ing from a usual process of triangulation. In particular, for the n on obvious geometrical
shapes, this mesh is �ne enough near the boundaries of
 f and 
 . The interface Sf

is entirely made up of faces of tetrahedra. Each of these faces iscommon both to
a tetrahedron contained in 
 f and to another one included in the environment 
 p. By
denoting by h the mesh size of
 , let us consider the discrete spaceWh

Wh = X h � Yh

with

X h =
�

Ph 2 C0(
 f ); Ph jT 2 P1;T 8 T 2 Th; T � 
 f
	

;

Yh =
�

' h 2 C0(
); ' h jT 2 P1;T 8 T 2 Th; ' h jS = 0
	

;

and P1;T the space of polynomials of degree less than or equal to 1, de�ned onT.
The discrete formulation associated with (2.12) and (2.13) consists of �nding

(Ph ; ' h) 2 Wh such that for all (Qh ;  h) 2 Wh
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8
>>>>>>>>>><

>>>>>>>>>>:

Z


 f

tPhQhdx +
Z


 f

P3
h

P2
0

Qhdx +
Z


 f

(� r Ph) � r Qhdx +
Z


 f

{ k

4�
(@z ' h)Qhdx

= �
Z


 f

{ k

4�
(@zw)Qhdx;

Z



(" r ' h) � r  hdx �

Z

Sf

4�� zPh  hd� +
Z


 f

4� (@zPh) hdx

= �
Z



(" r w) � r  hdx:

(3.1)

Conforming discretizations of the regions 
 f and 
 , as well as a conforming discretiza-
tion of the space W, are thus used; namely,Wh � W . By considering then the data t,
P0, { k, � , " , and w related to ' S , under the assumptions of Theorem 2.1, it arises that
the discrete formulation (3.1) has at least one solution. Let us specify that these data
will be so considered in what follows and in the next section. Also, as it was reported
for the case of the continuous formulation, let us indicate that there is not a uniqueness
of solution of the discrete formulation for any choice of data under the se same assump-
tions. By dealing with any solution (Ph ; ' h) of this discrete formulation, we determine
the resulting discrete electric polarization in association with P by using (2.8), wherein
P is replaced byPh and E by �r (' h + w).

Let us denote byf xj ; 1 � j � N g the set of vertices ofTh, numbered in such a way
that x1; : : : ; xN f 2 
 f and x1; : : : ; xN 0 2 
 , where N f , N 0 and N are respectively the
number of vertices in 
 f , 
 and 
 ; namely, N f < N 0 < N . In what follows, Jj 1; j 2K
represents, with j 1; j 2 2 N and j 1 < j 2, the set of integers j such that: j 1 � j � j 2.
Let uj be the shape function associated withxj , for j 2 J1; N K. We have thus, for
(Ph ; ' h) 2 Wh ,

Ph =
N fX

j =1

Pj uj ; ' h =
N 0X

j =1

' j uj ;

where Pj 2 R, for all j 2 J1; N f K, and ' j 2 R, for all j 2 J1; N 0K. The discrete
formulation (3.1) can then be written as a nonlinear matrix system having two vector
unknowns. It consists of �nding P = ( P1; : : : ; PN f )T 2 RN f and � = ( ' 1; : : : ; ' N 0 )T 2

RN 0
satisfying (

AP + N (P) + B � = F1;

CP + D � = F2;
(3.2)

where

A =

 Z


 f

(tu j ui + ( � r uj ) � r ui )dx

!

(i;j )2 J1;N f K2

;

B =

 Z


 f

{ k

4�
(@zuj )ui dx

!

(i;j )2 J1;N f K� J1;N 0 K

;
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C =

 

�
Z

Sf

4�� zuj ui d� +
Z


 f

4� (@zuj )ui dx

!

(i;j )2 J1;N 0K� J1;N f K

;

D =
� Z



(" r uj ) � r ui dx

�

(i;j )2 J1;N 0K2
;

N (P) =

0

@
Z


 f

1
P2

0

0

@
N fX

j =1

Pj uj

1

A

3

ui dx

1

A

i 2 J1;N f K

;

F1 =

 

�
Z


 f

{ k

4�
(@zw)ui dx

!

i 2 J1;N f K

;

F2 =
�

�
Z



(" r w) � r ui dx

�

i 2 J1;N 0K
:

Let us mention already that, in the frame of numerical computati ons regarding the
experiments that will be involved in the next section, the terms of these blocks are
evaluated with the help of a 5-th order quadrature formula [20]. O f course, when the
tensors " and � are constant in the geometrical elements and if w is in particular a
polynomial of degree less than or equal to1, this becomes then an exact formula in the
associated evaluations. It will always be the case in the next section since " and � will
be so used, as well asw from the considerations of ' S, in accordance of course with
the applications.

3.2. Iterative algorithms

In order to solve the nonlinear matrix system (3.2), we consider an iterative method
from the combination of two inexact Newton approaches. The �rst one, r epresented
by Algorithm 3.1, is globalized with a linesearch technique [11, 15], and converges
slowly, for a large choice of initializations, whereas the second one, represented by
Algorithm 3.2, is more standard and converges faster but for a restricted choice of
initializations [4]. The GMRES algorithm [16], using a precond itioner based on an
incomplete LU factorization, is incorporated into each iteration .

In Algorithms 3.1 and 3.2, the cost function F , de�ned for x 2 RN f + N 0
, is such that

F (x) =
�

A B
C D

�
x +

�
N (xN f )

0

�
�

�
F1

F2

�
2 RN f + N 0

;

where x = (x N f jxN 0 )T , xN f 2 RN f , xN 0 2 RN 0
. Thus, determining a solution (P; �)

of (3.2) is equivalent to �nd x satisfying F (x) = 0 , by considering the correspondences
xN f � P and xN 0 � � .
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Algorithm 3.1 (Inexact quasi-Newton algorithm with search for a step-length parame-
ter � )

1. Let x := x 0, where x0 is given. EvaluateF (x) . If kF (x)k2 � 0, stop the algorithm
and return x;

2. Let k := 1 ;

3. Evaluate JF (x) , and compute an approximate solution, � x, of the matrix equa-
tion JF (x) � x = � F (x) , with the restarted GMRES algorithm (preconditioned
by an incomplete LU factorization), satisfying kF (x) + JF (x) � xk2 � � kF (x)k2,
where � := min f 0:5; kF (x)k2g;

4. Compute � > 0:

4.1. Let � (0) := 1 ;
4.2. Evaluate f (x + � (0) � x), f (x) and r f (x) . If f (x + � (0) � x) � f (x) +

� 1� (0) r f (x) � � x and r f (x + � (0) � x) � � x � � 2r f (x) � � x, let � := � (0) and
go to Step 5;

4.3. Compute � (1) :=
kF (x)k2

2(� (0) )2

kF (x + � (0) � x)k2
2 + (2 � (0) � 1)kF (x)k2

2
;

4.4. Evaluate f (x + � (1) � x). If f (x + � (1) � x) � f (x) + � 1� (1) r f (x) � � x and
r f (x + � (1) � x) � � x � � 2r f (x) � � x, let � := � (1) and go to Step 5;

4.5. Let j := 2 ;

4.6. Compute � (j ) :=
� b+

p
b2 + 3akF (x)k2

2

3a
, where

�
a
b

�
:=

1
� (j � 1) � � (j � 2)

0

B
B
@

1
(� (j � 1))2

�
1

(� (j � 2) )2

�
� (j � 2)

(� (j � 1))2

� (j � 1)

(� (j � 2))2

1

C
C
A

�

 
f

�
x + � (j � 1) � x

�
� f (x) � (r f (x) � � x)� (j � 1)

f
�
x + � (j � 2) � x) � f (x

�
� (r f (x) � � x)� (j � 2)

!

;

4.7. Evaluate f (x + � (j ) � x). If f (x + � (j ) � x) � f (x) + � 1� (j ) r f (x) � � x and
r f (x + � (j ) � x) � � x � � 2r f (x) � � x, let � := � (j ) and go to Step 5;

4.8. Update j := j + 1 and return to Substep 4.6;

5. Update x := x + �� x;

6. Update k := k + 1 . If k is too large, stop the algorithm and return x;

7. Evaluate F (x) . If kF (x)k2 � 0, and
kF (x)k2

kF (x0)k2
� 0, stop the algorithm and

return x;

8. Return to Step 3.
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Algorithm 3.2 (Inexact Newton algorithm)

1. Let x := x 0, where x0 is given. EvaluateF (x) . If kF (x)k2 � 0, stop the algorithm
and return x;

2. Let k := 1 ;

3. Evaluate JF (x) , and compute an approximate solution, � x, of the matrix equa-
tion JF (x) � x = � F (x) , with the restarted GMRES algorithm (preconditioned
by an incomplete LU factorization), satisfying kF (x) + JF (x) � xk2 � � kF (x)k2,
where � := min f 0:5; kF (x)k2g;

4. Update x := x + � x;

5. Update k := k + 1 . If k is too large, stop the algorithm and return x;

6. Evaluate F (x) . If kF (x)k2 � 0, and
kF (x)k2

kF (x0)k2
� 0, stop the algorithm and

return x;

7. Return to Step 3.

Algorithm 3.2 is based on an inexact Newton technique that consists of �nding
a sequence(xk )k� 0 converging to a zero of F . In the standard Newton method, at
each iteration k, the vector xk+1 is equal to xk + � xk , where � xk is the solution of the
matrix equation JF (xk )� xk = � F (xk ), of course under the requirement that JF (xk ), the
jacobian matrix related to F and evaluated at xk , is invertible. Here, by representing
by k � k2 the euclidian norm on RN f + N 0

, we consider rather an approximation of � xk

subject to the relation below

kF (xk ) + JF (xk )� xkk2 � � kkF (xk )k2 (3.3)

with � k = min f 0:5; kF (xk )k2g, ensuring the convergence of the algorithm [4].
In Algorithm 3.1, we deal with the function f de�ned for x 2 RN f + N 0

as follows:

f (x) =
1
2

kF (x)k2
2 2 R:

Every solution x, x 2 RN f + N 0
, of the equation F (x) = 0 satis�es

f (x) = min
n

f (y); y 2 RN f + N 0
o

:

We use alinesearch technique, which consists of �nding a sequence(xk )k� 0 converging
to a minimum of f , with the help of a sequence of step lengths(� k )k� 0 such that, at
each iteration k, f (xk + � k � xk ) is ”suf�ciently smaller” than f (xk), where � xk satis�es
(3.3). More precisely, we assume that the Wolfe conditions [21] are satis�ed

f (xk + � k � xk ) � f (xk) + � 1� k r f (xk) � � xk ;

r f (xk + � k � xk ) � � xk � � 2r f (xk) � � xk
(3.4)
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with 0 < � 1 < � 2 < 1, ensuring the convergence of the algorithm [15]. In order to �nd
such a suitable coef�cient � k , we deal with a backtracking method[15]. Namely, we
use a sequence(� (j )

k ) j � 0 converging to a minimum of the function � k , de�ned for each
� 2 R as

� k(� ) = f (xk + �� xk ) 2 R:

We consider � k as being the �rst term � (j ? )
k of the sequence(� (j )

k ) j � 0 such that the

relations in (3.4) are satis�ed by substituting therein the coef �cient � k for � (j ? )
k . More

precisely, for building such a sequence, let us set� (0)
k > 0, by considering for instance

� (0)
k := 1 . We compute � (1)

k as being the minimum of a quadratic interpolation � quad
k of

� k , de�ned for each � 2 R as

� quad
k (� ) =

� 2

(� (0)
k )2

�
� k (� (0)

k ) � � k (0) � � (0)
k � 0

k(0)
�

+ � 0
k(0)� + � k(0):

Thus,

� (1)
k = �

� 0
k(0)( � (0)

k )2

2
�

� k(� (0)
k ) � � k(0) � � 0

k(0)� (0)
k

�

=
kF (xk )k2

2(� (0)
k )2

kF (xk + � (0)
k � xk )k2

2 + (2 � (0)
k � 1)kF (xk )k2

2

:

For j � 2, � (j )
k is chosen as being the (local) minimum of a cubic approximation � cub

k of
� k , expressed for each� 2 R as below

� cub
k (� ) = a� 3 + b� 2 + � 0

k (0)� + � k(0);

where

�
a
b

�
=

1

� (j � 1)
k � � (j � 2)

k

0

B
B
B
@

1

(� (j � 1)
k )2

�
1

(� (j � 2)
k )2

�
� (j � 2)

k

(� (j � 1)
k )2

� (j � 1)
k

(� (j � 2)
k )2

1

C
C
C
A

�

 
� k

�
� (j � 1)

k

�
� � k (0) � � 0

k(0)� (j � 1)
k

� k
�
� (j � 2)

k

�
� � k (0) � � 0

k(0)� (j � 2)
k

!

:

We consider thus, for j � 2

� (j )
k =

� b+
p

b2 � 3a� 0
k (0)

3a
=

� b+
p

b2 + 3akF (xk )k2
2

3a
:
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Algorithm 3.3 (Main algorithm)

1. Choose an initial datum x0 2 RN f + N 0
;

2. Call Algorithm 3.1;

3. Update x0 := x , where x is the output of Algorithm 3.1;

4. Call Algorithm 3.2.

Algorithm 3.3 is performed for determining solutions of (3.2). It r equires Algo-
rithm 3.1 as well as Algorithm 3.2, where we make in the implementation stage the
choice to evaluate numerically JF and r f at each point from their formal expressions,
as in [11]. An ef�ciency of this main algorithm was numerically observed in [11] from
investigations in a context not dedicated to applications in particular; namely, with the
considerations � 1 = 10 � 4 and � 2 = 10 � 1 that were suggested from [15].

Of course, by dealing with a framework where the expressions of theoretical solu-
tions are available, even without being related to a speci�c application, our numerical
inspections underline quantitatively the ef�ciency of this m ain algorithm.

As an example of this framework, let us consider that
 and 
 f are polyhedral, and
shaped like two cylinders sharing the same center, namely the origin, and the same
axis which is (Oz). The radii of the “cylinders” represented by 
 and 
 f are �xed as
equal to 1:2 and 0:4, respectively. Moreover, the heights of these “cylinders” are �xed
as equal to1:7 and 0:1, respectively. Also, let us consider

{ k = 10; P0 = 1 ; � = ( � i;j )1� i;j � 3;

" j
 f =
�

" f
i;j

�

1� i;j � 3
; " j
 p =

�
"p

i;j

�

1� i;j � 3
;

where � i;j = " f
i;j = "p

i;j = 0 for 1 � i 6= j � 3. The other coef�cients of these tensors are

� 1;1 = � 2;2 = � 3;3 = 0 :1; " f
1;1 = " f

2;2 = 10;

"p
1;1 = "p

2;2 = "p
3;3 = "p > 0; " f

3;3 = "kz > 0:

Let us set' S(x; y; z) = xy for (x; y; z)T 2 S. Although by �xing ' S in this way, it does
not refer to a concrete consideration with regard to the voltage potential applications,
a theoretical solution of (EGL) can be expressed. It follows in particular, when t = � 1,
that (P; ' ), where P(x; y; z) = 0 for (x; y; z)T 2 
 f , ' (x; y; z) = xy for (x; y; z)T 2 
 ,
satis�es (EGL). Correlatively, (P; � ) is subject to (2.12) and (2.13), with � = ' � w, and
w taken as in Theorem 2.1. Let us �x "kz = 0 :1, "p = 10, and consider three meshes of

achieved in accordance with Subsection 3.1. The �rst mesh involves25 183degrees of
freedom and is associated withh = h1 = 1 :66 10� 1 (which becomes equal to7:31 10� 2

under restriction to 
 f ). The second mesh deals with193 675degrees of freedom and is
associated withh = h2 = 8 :71 10� 2 (which becomes equal to4:44 10� 2 under restriction



126 P.-W. Martelli and S.M. Me�re

to 
 f ). The third mesh involves 1 499 982degrees of freedom and is associated with
h = h3 = 4 :79 10� 2 (which becomes equal to2:28 10� 2 under restriction to 
 f ).

Let us denoted byf x(i )
k g1� k� N 0( i ) the set of internal vertices of the i -th mesh of 
 ,

and consider

kuk(i )
2 =

0

@ 1
N 0(i )

N 0( i )X

k=1

�
�u(x (i )

k )
�
�2

1

A

1
2

;

for u : 
 �! R, where i is �xed, 1 � i � 3. Also, for the discrete solution (P (i ) ; ' (i ) )
associated with (P; ' ) and obtained from the i -th mesh, let us denote by

err (i )
2 =


 ' � ' (i )


 (i )

2

k' k(i )
2

the error evaluated relatively to ' .
From an initialization of the main algorithm with (1; : : : ; 1)T 2 RN 0( i )

, after taking w
in accordance of course with Theorem 2.1 and here as a polynomial of degree equal to
2, we obtain that the values corresponding toerr (i )

2 are very negligible, namely,err (1)
2 =

3:61 10� 6%, err (2)
2 = 7 :62 10� 7%, err (3)

2 = 1 :33 10� 7%. The same observation arises
by considering several other choices for the initialization of this algorithm. It results
moreover that the values corresponding to the absolute errors aboutP, as regards then

 f , are also negligible.

Another example of the mentioned framework is the one where we consider t = � 2,
with { k 6= 0 , "kz 6= "p again, by keeping the previous data for the other parameters.
Although by assigning such a value tot, which is not then related to a concrete con-
sideration with regard to the temperature applications, a theoretical solution of (EGL)
can be expressed; namely, when we set

' S(x; y; z) =
4�

"kz � "p
z; (x; y; z)T 2 S:

It follows in particular with { k = 1 that (P; ' ), where

P(x; y; z) = 1 ; (x; y; z)T 2 
 f ;

' (x; y; z) =
4�

"kz � "p
z; (x; y; z)T 2 
 ;

satis�es (EGL). Correlatively, (P; � ) is subject to (2.12) and (2.13), with � = ' � w,
and w taken as in Theorem 2.1.

By �xing "kz = 2 , "p = 1 , and considering the previous meshes of
 , as well as

(0; : : : ; 0)T 2 RN 0( i )
for the initialization of the algorithm, with w here as a polyno-

mial of degree equal to 1, we obtain that the values corresponding to err (i )
2 are very
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negligible too. The same observation derives from several other choices for the initial-
ization of this algorithm. Moreover, it arises that the values corresponding to the errors
determined similarly and relatively to P, as regards then
 f , are also negligible here.

In addition to the ef�ciency of this algorithm on the quantitativ e aspect, let us
mention that our numerical inspections underline an associated approach which pro-
vides very satisfactory results from a qualitative point of view. Namely, with respect to
(small) values of the parameter h, the same types of transition jumps of solutions are
numerically provided for a same set of data associated with physical and geometrical
parameters. Let us �x { k = 10, t = � 20, "kz = 0 :1, "p = 0 :1, by keeping the previous
values for the other parameters, and consider the three previousmeshes of
 , where
of course hj < h i , for 1 � i < j � 3. As previously, this arbitrary value assigned tot is
however unrelated to a concrete consideration with regard to the temperature applica-
tions. With � 0 2 R, let us set ' S(x; y; z) = � 2z

H � 0 for (x; y; z)T 2 S, by indicating that
H = 1 :7 is the height of the “cylinder” represented by 
 .

In contrast to the previous cases, the expressions of theoreticalsolutions are not
here available.

In addition to the above notation, let us consider kuk(i )
1 = max 1� k� N 0( i ) ju(x (i )

k )j,

for u : 
 �! R, where f x(i )
k g1� k� N 0( i ) corresponds again to the set of internal vertices

of the i -th mesh of 
 , with i �xed, 1 � i � 3. For a discrete solution (P (i ) ; ' (i ) )
obtained from the i -th mesh and a discrete solution (P (j ) ; ' (j ) ) resulting from the
j -th mesh, which are associated with (EGL) and where1 � i < j � 3, we deal with the
error between ' (j ) and ' (i ) , evaluated relatively to ' (j ) . Let us then set

err (i;j )
2 =


 ' (j ) � ' (i )


 (j )

2

k' (j )k(j )
2

; err (i;j )
1 =


 ' (j ) � ' (i )


 (j )

1

k' (j )k(j )
1

:

The results represented in Fig. 1 are related to the consideration U = 2 � 0, from the
choice of ' S (see also [11]). The function w, taken as in Theorem 2.1, is in particular

Figure 1: Semi-log representation oferr ( i;j )
2 , err ( i;j )

1 (1 � i < j � 3) with respect to U = 2 � 0 .
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here a polynomial of degree equal to 1. Various values are taken for � 0; this refers
to a variation of ' S. These results concern the numerical values (not expressed in
percent) that are obtained for err (i;j )

2 , err (i;j )
1 , from the three previous meshes.

The solutions arising from these meshes have the same pro�les. Moreover, the tran-
sition jumps of solutions are associated with the same values ofU. Also, the maximal
value of all the errors err (i;j )

2 , err (i;j )
1 , for 1 � i < j � 3, remains of course small.

Similar results derive from the evaluations of errors about P (i ) . Namely, smaller values
are obtained in the determination of these errors associated with
 f .

4. Numerical experiments

We are interested here in particular in developments which aim at impregnating
physical experiments. After describing the computational con�gurations, we investi-
gate the state switchings related to (2.1)-(2.7) as well as calibration effects based on
the numerical variations of parameters of this model.

4.1. Computational con�gurations

We distinguish two types of computational con�gurations. The �rst one is devoted
to cylindrical geometries while the second one is related to parallelepipedic geometries.
For the �rst type, 
 f and 
 are polyhedral and shaped like cylinders; they share the
same center, namely the origin, and the same axis, represented by (Oz). We denote
by Rf the radius and H f the height of the “cylinder” represented by 
 f . In a similar
way, the radius and the height of the “cylinder” represented by 
 are denoted byR and
H , respectively. For the second type,
 f and 
 are parallelepipedic. The mesh of

associated with each con�guration is achieved in accordance with the previous section.
Namely, we consider two reference con�gurations, dealing with volumes approximately
equal as well as with the same height as regards
 f , and in association with the meshes
represented by:

� T (1)
h , in the cylindrical frame with (Rf ; H f ) = (8 ; 1:7) and (R; H ) = (12 ; 17);

� T (2)
h , in the parallelepipedic context, where


 f = [ � Rf ; Rf ] � [� Rf ; Rf ] �
�
�

H f

2
;

H f

2

�

with thus (Rf ; H f ) = (7 :09; 1:7), and


 = [ � R; R] � [� R; R] �
�
�

H
2

;
H
2

�

with (R; H ) = (15 ; 30).
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Let us already mention that several values, for the mesh sizeh, have been used in
numerical experiments, relatively to each con�guration. In t he next subsections, the
results that will be presented derive, in the absence of any otherexplicit mention, from
experiments with the consideration h = 0 :61, involving 485 621degrees of freedom for
T (1)

h and 1 121 858in the frame of T (2)
h . Correlatively, this mesh size becomes equal to

0:47 under restriction to 
 f .
Regarding the physical parameters, we consider for each computational con�gura-

tion, by denoting by I 3 the 3 � 3 identity tensor

" j
 f =

0

@
10 0 0
0 5 0
0 0 1

1

A ; " j
 p = "pI 3;

"p = 90, � = I 3, P0 = 1 , { k = 11:5. Let us already indicate, in particular, that variations
of the parametersRf , H f , t and "p will be performed in Subsection 4.3.

With � 0 2 R, we de�ne ' S as

(x; y; z) 2 S 7�! ' S(x; y; z) =
H � 2z

H
� 0 � � 0 2 R

in such a way that ' S(x; y; � H
2 ) = � 0 and ' S(x; y; H

2 ) = � � 0. This is in association
with the voltage potential U applied to the device

U = 2 � 0

as well as with the consideration of w in (3.1), as in (2.12) and (2.13), such that

w(x; y; z) =
H � 2z

H
� 0 � � 0

for (x; y; z)T 2 
 . Namely, wjS = ' S.
In the next subsections, we will describe the numerical results, in each con�gura-

tion, through also the behavior of the discrete “average polarization”. This scalar �eld
is represented byPh ,

Ph =
1

j
 f j

Z


 f

Phdx;

and arises from the �nite element approximation of a state (P; ' ) subject of course to
(EGL).

Although in the applications the reduced temperature t takes values in [� 1; 0), as
reported in Section 2, we will be interested in the extended consideration where t 2
[� 1; 0].

4.2. Numerical study of state switchings

We make here use of a protocol presented in [11, 12] which is suitable for the
determination of non obvious states and incorporates also a process of ”heating” as
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well as of ”cooling” of a ferroelectric device. We initialize Algor ithm 3.3 with random
vectors of sizeN f + N 0, distributed according to the uniform law of [� 1; 1]N f + N 0

, as
well as with deterministic vectors.

We obtain several pro�les; each one allowing us to identify the (di screte) states
(Ph ; ' h), namely subject to (EGL), and for which the polarization texture is similar.
Fig. 2 presents some of these pro�les, resulting from T (1)

h and T (2)
h , with t = � 0:9,

U = 0 . They are distinguished by the shape and by the number of polarization domains
as being:

� Monodomain Pro�le (MP), case of a unique domain of polarization (see Figs. 2(a)
and 2(b));

� Concentric-cylindrical Pro�le (CP), context of a central domain sh aped like a cy-
linder or distorted cylinder, surrounded by another domain (see Figs. 2(c) and
2(d));

� 2-Bands Pro�le (2BP), case of two domains, organized into bands (see Figs. 2(e)
and 2(f)).

In addition to these and in particular, the Obvious Pro�le, denote d by (OP) in the se-
quel, in correspondence to the case wherePh � 0, arises from simulations performed
here, as well as the pro�le with four domains having a ”diamond” sh ape (see Fig. 3).
Note that some of the pro�les obtained have already been observed in [13, 19], in-
cluding the 2-Bands Pro�le experimentally found in the case of a nano�lm of Lead
Titanate [19].

Each non obvious state of the device can be numerically submitted to a”heating” or
a ”cooling” process. Namely, in order to compute a solution of (3.2) at the temperature
t + �t , where �t 2 R?, we initialize Algorithm 3.3 with the help of a solution resultin g
at the temperature t (see also [11] for more details).

Fig. 3 presents the results obtained from T (2)
h , with respect to the temperature,

when we “heat up” (with �t = 10 � 3) or “cool down” (with �t = � 10� 3) several states,
for U = 0 . While Ph depends continuously on the temperature, the distributions of
the polarization stay similar. In this study, a discontinuity c orresponds to a change
of pro�le. For instance, (MP) exists for a range of small values taken by the reduced
temperature and jumps, under heating, to (CP) at t = � 0:805. Such a transition is
quali�ed as irreversible since, by lowering the temperature fr om the new pro�le (here
(CP)), we do not �nd the �rst pro�le (namely (MP)). The next jump s, thus initiated by
(MP), are schematized as bellow

(MP) �!
t= � 0:805

(CP) �!
t= � 0:335

(2BP) �!
t= � 0:307

(OP) :

Here and in the next subsections, each jump corresponds to an irreversible transition.
Each pro�le persists below a maximal temperature, beyond which it disappears; this is
called the critical temperatureof the pro�le. In this study, the pro�le having the highest
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(a)-(MP)

(b)-(MP)

(c)-(CP)

(d)-(CP)

(e)-(2BP)

(f)-(2BP)

Figure 2: Some pro�les obtained fromT (1)
h ((a),(c),(e)) and T (2)

h ((b),(d),(f)), with t = � 0:9, U = 0 .
At the left, a cross-section ofPh following (z = 0) is represented, whereas at middle and at the right, the
cross-sections of the discrete electric polarization, associated with P , following (y = 0) and (z = 0) are
respectively represented.
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Figure 3: Representation ofPh with respect to the reduced temperature, fromT (2)
h .

critical temperature, tc, is (2BP); namely, tc � � 0:307. Thus, tc corresponds to the
critical temperature of the material system.

This behavior, characteristic of ferroelectric devices [14], appears also in the con-
text of simulations from T (1)

h . In particular, these same four pro�les persist in this
context with similar temperature ranges and transitions; the most enduring pro�le
with nonzero polarization is also the one corresponding to (2BP). Each of the states
associated with (2BP) has a constant “average polarization”; namely, Ph � 0.

Let us specify that the volume of the ferroelectric layer must be suf�ciently small
when compared to the one of 
 , in order to avoid to disturb the emergent fringing �eld
(see, e.g., [13] and the references therein). Of course, as long as the volume of the fer-
roelectric layer does not appear however as too small, numerical instabilities will not
be involved; although the asymptotic framework developed by Ammari et al. [1] may
remedy the contrary situation. We already mention that we deal with a ferroelectric
layer for which the volume appears numerically as suf�ciently small when compared
to the volume of 
 , but not too small, in each of the two reference con�gurations con-
sidered here. For instance in the context ofT (2)

h and as for an inspection, let us embed
successively the associated ferroelectric layer in two largerparaelectric environments,
by de�ning


 (3) � 
 = [ � 15; 15] � [� 15; 15] � [� 15; 15];


 (2) = [ � 16; 16] � [� 16; 16] � [� 16; 16];


 (1) = [ � 17; 17] � [� 17; 17] � [� 17; 17]:

Let us consider three meshes corresponding to triangulations of
 (3) , 
 (2) and 
 (1)

respectively, and having similar sizes approximately equalto 0:61, with correlatively, as
regards the ferroelectric layer, similar mesh sizes approximately equal to 0:47. These
meshes, built under the requirements of Subsection 3.1, involve respectively1 121 858,
1 772 141and 2 292 108degrees of freedom. Of course, a unique ferroelectric/paraelec-
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tric interface is here represented. Let us denote byf x(i )
k g1� k� N 0( i ) the set of internal

vertices of the mesh of
 (i ) , where i is �xed, 1 � i � 3. For u : 
 (i ) �! R and 1 � i � 3,
let

kuk(i )
2 =

0

@ 1
N 0(i )

N 0( i )X

k=1

�
�u(x (i )

k )
�
�2

1

A

1
2

:

For a �nite element approximation (P (i ) ; ' (i ) ) obtained from 
 (i ) and associated with
a state subject to (EGL) with ' S = 0 , we consider the following error

err (i )
2 =


 ' (1) � ' (i )


 (i )

2

k' (1) k(i )
2

evaluated relatively to ' (1) . By inspecting the behavior of the pro�le (MP), with respect
to the reduced temperature, from t = � 1 and with �t = 5 10� 3, it follows, based on

 (i ) ( i = 2 ; 3), that the jump to (CP) occurs again, namely at t = � 0:80. As it can be
observed for instance from the results represented in Fig. 4, theerrors err (i )

2 ( i = 2 ; 3)
associated with the pro�le (MP), or (CP), are less than 1%. The similar evaluations of
errors about P (i ) provide values which remain also smaller than 1%. The extension of
the present paraelectric environment related to 
 appears then numerically as without
particular signi�cant in�uence. Let us indicate that a simi lar study has been done, by
obtaining relative errors now less than 6%, in the context of T (1)

h . Also, let us mention
that the CPU time corresponding to one simulation (computation of (P (i ) ; ' (i ) ) based
on 
 (i ) , 1 � i � 3) is approximately equal to 2h, 3h30 or 8h on an “Intel Xeon Processor
E5520 with a frequency of 2.27 GHz”, in the frame of 
 (3) , 
 (2) or 
 (1) respectively.

Figure 4: Representation of the relative errorserr (2)
2 and err (3)

2 with respect to the reduced temperature,
from parallelepipedic con�gurations with extensions of the paraelectric environment and vanishing boundary
voltage potentials.
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Figure 5: Hysteresis loops, fort = � 0:9, from T (2)
h .

We adopt for the numerical study of the existence of hysteresis loopsa protocol
similar to the one involved above in the investigation of the polariz ation texture with
respect to the temperature. Namely, instead of variations of the temperature with a step
�t , we consider variations of U with a step �U (see [12] for more details).

Fig. 5 presents the numerical results obtained from the parallelepipedic con�gura-
tion, with t = � 0:9 and �U = � 0:001. These results correspond to hysteresis loops. We
have, by increasing the voltage potential from U = � 0:6, the switchings schematized
as below

(MP ) �!
U=0 :062

(CP) �!
U=0 :314

(MP ):

These abrupt switchings are irreversible, and de�ne a hysteresis branch. By decreasing
the voltage potential, from (MP) and U = 0 :6, we observe the switchings represented
as follows

(MP ) �!
U= � 0:062

(CP) �!
U= � 0:314

(MP );

de�ning the second hysteresis branch, in a symmetric way to the �r st branch as regards
the origin. Thus, we get a hysteresis loop. Similarly, by decreasing the voltage potential
from (CP) and U & 0:062, the switching schematized as below arises

(CP) �!
U= � 0:052

(MP ):

This is an abrupt switching, leading us to underline the existence of another hysteresis
loop, called the ”local hysteresis loop” here and in the next subsections. It arises also
a second local hysteresis loop, symmetric to the previous one as regards the origin. It
follows then, in particular, the existence of several distinct states when U = 0 ; such
a multidomain switching opens new routes for the design of high-capacity nanosize
memory-storage devices in the ferroelectric-based nanoelectronics[13].

Similar results were obtained from T (1)
h ; in particular, it arises also from this con-

�guration a ”global” hysteresis loop and two local hysteresis loops.
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Let us indicate that the numerical results obtained here do not deteriorate from
the considerations of some larger mesh sizes, in the cylindrical frame as well as in the
parallelepipedic context.

4.3. Calibration effects

We are here concerned with the numerical study of the in�uence of certain parame-
ters of the ferroelectric model by inspecting also how the associated critical temperature
can be adjusted. Let us already mention in particular that, as regards the geometrical
parameters, the related variations will not involve numerical instabilities, although the
framework developed in [1] may remedy such a situation as indicated in the previous
subsection. Of course, although suf�ciently small when compared to the size of the
medium 
 , the size of the ferroelectric layer will not however appear as too small in
these variations that are in accordance with the applications context.

4.3.1. In�uence of the parameters on the state switchings

We investigate here the in�uence of the size of the ferroelectric layer and of the per-
mittivity of the paraelectric environment, as regards the state switchings. This study
is based on variations of the geometrical parameter represented bythe width, Rf , of
the ferroelectric layer as well as on variations of the physical parameter "p associated
with the permittivity of the paraelectric environment. We focu s on the description of
investigations from states only related to the (MP) and (CP) pro� les (which appear by
an increasing of U from low voltage potentials), in order to simplify the presentati on
hereafter.

The numerical results associated with Fig. 6(a) are obtained inthe context of cylin-
drical geometries with respect to Rf , and in terms of t, by �xing "p = 90, U = 0 ,
�t = 10 � 3. Several widths have been considered; namely,Rf = 1 + k�r , with �r =
5 10� 1, 0 � k � 18. Each consideration ofRf corresponds then to a ”cylindrical con-
�guration” for which, systematically, the associated mesh size is approximately equal
to 0:61 for 
 and to 0:47 as regards
 f . Different situations occur. For small values of
Rf , namely for the considerations de�ned as above and such thatRf � 5:5, only the
(MP) pro�le exists. Then, for the ones which are such that 6 � Rf � 7:5, the (CP)
pro�le appears. A new type of switching occurs; namely, the switching of (MP) to (CP)
is smooth. Regarding the considerations where8 � Rf � 9:5, the switching of (MP)
to (CP) is abrupt. In each of these situations, the transition temperature, t t , decreases
while Rf increases. For the largest value ofRf related to these considerations, i.e.,
Rf = 10, there exists only one pro�le; namely, the (CP) pro�le.

Fig. 6(b) presents, in the context of parallelepipedic geometries, the numerical re-
sults obtained from a similar study, with the same considerations for Rf , "p, U and
�t . Also, for each ”parallelepipedic con�guration”, the associated mesh size is approx-
imately equal to 0:61 as regards
 and to 0:47 about 
 f . Similar phenomena occur:
for these con�gurations where the width is such that Rf � 5:5, only the (MP) pro�le
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(a) (b)

Figure 6: Representations ofPh with respect to the reduced temperature, for di�erent values of Rf , from
cylindrical con�gurations (a) and parallelepipedic con�gurations (b). The mark "� " denotes states associated
with the (CP) pro�le, and the absence of this mark concerns states associated with the (MP) pro�le.

appears and then, for Rf 2 f 6; 6:5g, (MP) switches continuously to (CP). For the con-
siderations where 7 � Rf � 8, (MP) switches abruptly to (CP) and for the ones such
that Rf � 8:5, only the (CP) pro�le exists.

Based on the same variations ofRf and for the same associated meshes, we have
investigated the existence of hysteresis loops from the cylindrical context, with t =
� 0:9 and �U = � 10� 3. Fig. 7(a) presents the numerical results deriving from this
investigation. Only abrupt transitions are obtained, and the (CP) pro�le does not exist
for any choice of Rf . There exist two types of loops:

� for the considerations such that Rf � 5:5, there exists a switching of a state,
associated with the (MP) pro�le, to another one. Here, we denote by ( 1H-1P)
this type of obtained curve, in which only one hysteresis loop and a unique kind
of pro�le appear;

� for the considerations where Rf � 6, jumps are obtained and schematized as
below

(MP ) �!
U= U?

(CP) �!
U= U??

(MP );

where U? and U?? are two values, related namely to Rf . These are abrupt tran-
sitions, and there exist three hysteresis loops (the two local hysteresis loops that
arise in addition are not represented in Fig. 7(a) in order to not ov erload it). We
denote by (3H) this type of loops.

Similar results deriving from the parallelepipedic context, with the same consider-
ations for Rf , t and �U , are represented in Fig. 7(b). Again, only smooth transitions
and two types of hysteresis curves are obtained:
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(a) (b)

Figure 7: Hysteresis loops obtained for di�erent values ofRf , with t = � 0:9, from cylindrical con�gura-
tions (a) and parallelepipedic con�gurations (b). The mark" � " denotes states associated with the (CP)
pro�le, and the absence of this mark concerns states associated with the (MP) pro�le.

� for the considerations such that Rf � 5:5, only the (MP) pro�le exists and we
deal with (1H-1P) curves;

� whereas for the ones corresponding toRf � 6, the (MP) and (CP) pro�les appear,
so we get (3H) curves.

Let us now study the in�uence of the physical parameter "p. We consider a �nite
sequence of values,"p = 10 + k�" , with �" = 10, 0 � k � 19. Also, we �x Rf = 8 for
the cylindrical con�guration, and set Rf = 7 :09 for the parallelepipedic con�guration
in order to deal with ferroelectric layers of similar volumes in th e two cases.

Fig. 8(a) presents, in the cylindrical context, the behavior of Ph with respect to t,
by �xing U = 0 and �t = 10 � 3. As previously in the study of variations of Rf , four
different situations occur. For the considerations of "p such that "p � 70, only the (CP)
pro�le exists, then for the ones where 80 � "p � 110, (MP) switches abruptly to (CP)
whereas for the ones such that120 � "p � 160, this switching is smooth. Finally, for
"p � 170, there exists only the (MP) pro�le.

Fig. 8(b) presents, from the parallelepipedic context, the numerical results obtained
from a similar study, with the same considerations for "p, U and �t . The four situations
described above occur also. For the considerations where"p � 70, there exists only the
(CP) pro�le. For "p 2 f 80; 90; 100g, the (MP) pro�le switches abruptly to (CP), then,
for the considerations such that110� "p � 160, the switching is smooth between these
two pro�les, and �nally, when "p � 170, only the (MP) pro�le exists.

Fig. 9(a) presents, in association with these variations of"p, the results arising from

T (1)
h and regarding the investigation of the existence of hysteresis loops, with t = � 0:9

and �U = 10 � 3. Two new types of curves arise in addition to the two previous ones:
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(a) (b)

Figure 8: Representations ofPh with respect to the reduced temperature, for di�erent values of " p , from
T (1)

h (a) and T (2)
h (b). The mark " � " denotes states associated with the (CP) pro�le, and the absence of

this mark concerns states associated with the (MP) pro�le.

� for "p 2 f 10; 20g, the transitions schematized as below, whereU? and U?? are two
values related namely to "p,

(MP ) �!
U= U?

(CP) �!
U= U??

(MP )

are smooth. As a consequence, no hysteresis loop appears, and we denote by
(0H) this type of curve. This is a limiting case;

� for "p 2 f 30; 40; 50g, the (MP) and (CP) pro�les appear and the �rst transition
(MP ) ! (CP) is smooth, whereas the second one, from a state associated with
(CP) to another one, is abrupt. Thus, there exists one hysteresis loop involving
two pro�les. We denote by (1H-2P) this type of curve;

� for the considerations where 60 � "p � 130, the two transitions schematized as
follows, (MP ) ! (CP) ! (MP ), are abrupt. The type of (3H) curves arises here
also;

� for the considerations corresponding to "p � 140, the transition from a state
associated with (MP) to another one appears and we get again (1H-1P) curves.

As indicates Fig. 9(b), similar results arise from T (2)
h , for t = � 0:9 and �U = 10 � 3.

Namely, for "p 2 f 10; 20; 30g, (0H) curves are obtained, while the considerations "p 2
f 40; 50; 60g correspond to (1H-2P) curves; the considerations where70 � "p � 110
lead to (3H) curves and the ones such that"p � 120provide (1H-1P) curves.
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(a) (b)

Figure 9: Hysteresis loops obtained for di�erent values of" p , with t = � 0:9, from T (1)
h (a) and T (2)

h (b).
The mark "� " denotes states associated with the (CP) pro�le, and the absence of this mark concerns states
associated with the (MP) pro�le.

Independently of the considered con�gurations, the same types of transitions under
the in�uence of the geometrical parameter Rf are retrieved also under the in�uence of
the physical parameter"p. Thus, if we deal with a small ferroelectric layer, the behavior
corresponding to the one of a larger layer can be obtained by acting on thepermittivity
of the paraelectric environment: we are then concerned with a kind of material doping.
An aspect is that all the properties are not however perfectly preserved, since the critical
temperature seems to depend strongly on"p and much less onRf ; an action on this
aspect will be investigated later.

We observed that the same diversity of classes of hysteresis loops was not found
from variations of Rf ; namely, (0H) and (1H-2P) curves were not found. Let us con-
sider other values of the temperature in order to prospect more.

Fig. 10 concerns the results arising fromT (1)
h and regarding the investigation of

the existence of hysteresis loops, with"p = 90 and �U = 10 � 3, for several values of
the temperature; namely, t = � 0:05 � k�t , with �t = 10 � 1, 0 � k � 9. For these
considerations, we �nd the three types of curves described before. In the case where
t � � 0:25, only the (MP) pro�le appears, so we obtain (0H) curves. This result was
expected since it is found before that, for these values of parameters, the critical tem-
perature is � 0:318; so, the material system is subject to its paraelectric phase. In the
case wheret = � 0:35, it is subject to its ferroelectric phase and the two pro�les (MP )
and (CP) exist: the switching between these is smooth, and we thus obtain the type of
(0H) curves again. Then, for the considerations where� 0:65 � t � � 0:45, the switch-
ing between (MP) and (CP) is abrupt, and we thus have (1H-2P) curves. Finally, for
t 2 f� 0:75; � 0:85; � 0:95g, all the switchings are abrupt, and we obtain (3H) curves.
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Figure 10: Hysteresis loops obtained for di�erent values oft , from T (1)
h . The mark "� " denotes states

associated with the (CP) pro�le, and the absence of this markconcerns states associated with the (MP)
pro�le.

We are thus concerned with the same diversity of classes of hysteresis loops as in the
frame of the variations of "p.

4.3.2. Calibration of the critical temperature

We have observed in particular previously that the permittivit y of the paraelectric en-
vironment seems to have a strong in�uence on the critical temperature of the material
system (see, e.g., Fig. 8). A similar in�uence was not noted from the variations of the
width of the ferroelectric layer (see, e.g., Fig. 6).

Here, we want to study how precisely the critical temperature, tc, behaves from
common variations of the paraelectric environment permittivity and of the height, H f ,
of the ferroelectric layer. For this, we consider several values ofthe pair ("p; H f ).
Namely, we set"p = 1 + k, with 0 � k � 9, as well as"p = 10 + 10 k, with 0 � k � 19,
and take H f 2 f 1:1; 1:4; 1:7; 2; 2:25; 2:5g, in the parallelepipedic context by �xing again
Rf = 7 :09. For each consideration of("p; H f ), the behavior of the system with respect
to the temperature is studied. Each of the pro�les obtained has a critical temperature,
determined by �xing also �t = 10 � 2, and it is of course retained that the largest one of
these temperatures denotes the critical temperature,tc, of the system. Let us specify
that, systematically, the critical temperature related to the (P2B) pro�le, existing in
each of the achieved experiments, is the largest one.

The obtained results are represented in Fig. 11, where the critical temperature is
reported with respect to "p and H f . It derives that calibrations can be performed:
for instance, for reaching the critical temperature tc = � 0:5, when the height of the
ferroelectric layer is such that H f = 2 :5, it is necessary to have for the paraelectric en-
vironment a permittivity such that "p � 31. It is also possible to reach the same critical
temperature when the ferroelectric layer height is such that H f = 1 :4, by considering



Switching Behavior in Finite Media with 3D Ferroelectric-Paraelectric Interactions 141

Figure 11: Numerical variation of the critical temperaturewith respect to " p , for di�erent values of H f from
the parallelepipedic con�gurations, and withU = 0 .

now a paraelectric environment for which the permittivity is su ch that "p � 54.
We �nd that tc depends on "p, but there is moreover a dependence onH f : the

critical temperature increases with respect to the height H f . The results represented
in Fig. 11 indicate that "p 7! tc("p) increases for"p taking large values, independently
of the considered values forH f . Also, it occurs that tc increases slowly with respect to
these values ofH f and for each of the large values of"p. Similar results persist when
we reproduce entirely the study by taking now for instance Rf = 8 . In particular, this
underlines the aspect already reported and relating that the parameter Rf does not
have a strong in�uence on the critical temperature.

Let us mention that similar results derive also from numerical experiments achieved
in the context of cylindrical con�gurations.

5. Concluding remarks and perspectives

From a variational method based on the Ginzburg-Landau formalism in combina-
tion with the electrostatics equations that was introduced in [1 1], we have numerically
investigated here the switching behavior aspects and calibration effects relative to �-
nite media embedding fully a three-dimensional ferroelectric layer in a paraelectric
environment. The associated discrete nonlinear system, deriving from �nite element
discretizations, is solved with the help of a described iterative approach that combines
two inexact Newton techniques. The �rst one, globalized with a li nesearch method,
converges slowly for a large choice of initializations, whereas the second one, more
standard, converges faster but for a restricted choice of initializations.

The numerical investigations were performed by involving platelet samples in par-
allelepipedic and cylindrical con�gurations. In these invest igations, the study of the
in�uence of geometrical and physical parameters was based on variations of the width
of the layer as well as on its height, and on variations of the paraelectric environment
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permittivity. Two switching types, namely related to smooth or a brupt state switchings,
as well as various hysteresis curves have been found. A particular property highlighted
here is that, independently of the considered con�gurations, a same switching behavior
under the in�uence of the ferroelectric layer width is retrieve d from the in�uence of
the paraelectric environment permittivity. Namely, if we de al with a ferroelectric layer
of small size, the behavior corresponding to the one of a larger width can be retrieved
by acting upon the paraelectric environment permittivity. More over, and in particular,
we studied the behavior of the transition temperature, between the paraelectric and
ferroelectric phases, with respect to the paraelectric environment permittivity and to
the ferroelectric layer height. It is observed that by dealing with a ferroelectric layer of
small size, such a temperature in correspondence with a thickerlayer can be retrieved
by acting upon the paraelectric environment permittivity. In p articular, the associated
�ndings deriving from these investigations would aim at impreg nating physical experi-
ments that could be achieved for instance with samples of Sodium Nitrite in the design
of the ferroelectric layer.

The perspectives of this work consider numerical investigations in the time depen-
dent context, by dealing again with a fully embedded ferroelectric layer. This context
shall require a model involving a three-dimensional physical region of interest which,
in contrast when compared for instance with the one studied from a theoretical point
of view in [2], is not represented alone by a ferroelectric materia l. These investigations
shall concern in particular the study of state switchings as well as of the existence of
hysteresis loops, also under the in�uence of the geometrical and physical parameters,
without excluding the long time consideration too.
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