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Abstract. The implicit numerical methods have the advantages on preserving the
physical properties of the quantum system when solving the time-dependent Kohn-
Sham equation. However, the ef�ciency issue prevents the practical applications of
those implicit methods. In this paper, an implicit solver based on a class of Runge-
Kutta methods and the �nite element method is proposed for th e time-dependent
Kohn-Sham equation. The ef�ciency issue is partially resolved by three approaches,
i.e., an h-adaptive mesh method is proposed to effectively restrain the size of the
discretized problem, a complex-valued algebraic multigrid solver is developed for
ef�ciently solving the derived linear system from the impli cit discretization, as well
as the OpenMP based parallelization of the algorithm. The numerical convergence,
the ability on preserving the physical properties, and the ef�ciency of the proposed
numerical method are demonstrated by a number of numerical experiments.

AMS subject classi�cations : 35Q41, 81Q05, 65M60, 65M55, 65M50
Key words : Time-dependent Kohn-Sham equation, implicit midpoint scheme, �nite element
methods, h-adaptive mesh methods, complex-valued algebraic multigrid methods.

1. Introduction

Suppose that there is an electronic structure system consistingof M nuclei and
N electrons. The evolution of this many-body system in the nonrelativistic sense is
fundamentally controlled by the time-dependent Schrödinger equation (TDSE)

i
B
Bt

	 � H 	 in R3; (1.1)
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where i denotes the imaginary unit, H consists of the kinetic energy operator for each
particle as well as the classical Coulomb interactions between each pair of particles,
and 	 : � 	 p~X 1; : : : ; ~X M ; ~x1; : : : ; ~xN ; tq is the high dimensional wavefunction depend-
ing on the position of each particle and a time variable. It is this high dimensionality of
the wavefunction 	 which makes the analysis and computation on the TDSE very chal-
lenging. The time-dependent Kohn-Sham (TDKS) density functional theory is one of
the most successful approximation models towards partially overcoming this challenge,
which can be written as
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 j ; j � 1; : : : ; N; (1.2)

where � p~x; tq �
°

j | j p~x; tq|2 is the time-dependent electron density, zl and ~Rl for
l � 1; : : : ; M denote the nuclear charge and position of the l-th nucleus, and VKS de-
notes the Kohn-Sham potential consisting of the external potential, the Hartree poten-
tial, as well as the exchange-correlation potential, respectively. Here, an adiabatic ap-
proximation for the exchange-correlation potential, denoted by vALDA , is considered.
Guaranteed by the Runge-Gross theorem [22], the time-dependent electron density
� p~x; tq is used as a fundamental variable to represent an evolved many-bodysystem.
It is noted that the electron density � is a four dimensional variable in a three dimen-
sional space. This huge reduction of the dimension brings the possibility on quality
analysis and simulation for the many-body system. So far, the TDKS equation has been
widely used in a variety of applications such as material science, nano-optics, and at-
tosecond science, etc. Please refer to [21] and references therein for more details on
the application of the TDKS equation.

There have been lots of numerical methods in the market to solve the TDKS equa-
tion in the time domain, people may refer to [3,7,14] and referen ces therein for detail.
People may also refer to [11, 16, 28] for numerical methods of Schr̈odinger equation.
Among those grid-based numerical methods, the �nite difference methods [1], the �-
nite element methods [3,8,9,17,18,27], the discontinuous Galerkin methods [20], the
wavelet methods [12] etc. are popular for the spatial discretization, while there are
Runge-Kutta methods, commutator-free Magnus expansion methods, etc. for the tem-
poral discretization. It is worth mentioning that the comparison of the performance of
those time propagators, including the linear multistep methods, can be found from a re-
cent paper [14]. However, it should be pointed out that the memory is sue of the solver
is missed there, and that many factors would affect the performance of those solvers,
for example, the performance of the linear solver for the implicit methods. Due to their
advantage on the memory requirement, the single step methods such as the Runge-
Kutta methods have attracted much attention in solving the time-dependent problems.
Furthermore, some implicit one-step solvers have the property on well preserving the
physical structure of the TDKS equation. These advantages make the solvers such as
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the implicit midpoint scheme very popular in the practical sim ulations. It is noted
that some solvers using the explicit pseudospectral-splittingapproach are also compet-
itive [4,24], since the Laplace operator in these solvers can be treated in Fourier space
very ef�cient. However, when the practical problem with nonperi odic boundary condi-
tions or the all-electron model is needed in the simulation, the �ni te element method
with nonuniform mesh grids would be more attractive.

In this paper, we propose a numerical solver for the TDKS equation, with the implicit
midpoint scheme for the temporal discretization and the �nite el ement method for the
spatial discretization. Towards improving the ef�ciency of the simulations, the follow-
ing three approaches are studied in detail. First of all, an h-adaptive mesh method is
employed in the algorithm to dynamically control the total amount of th e grid points
of the mesh. This is an attractive strategy for numerically solving the TDKS equation,
especially when the all-electron model is considered in the simulation. An adaptive
process is designed in this paper following [26], in which the di stribution of the nu-
merical error is generated by a heuristica posteriorierror estimation, while the ef�cient
operations on the local re�nement of the mesh grids as well as the solution update be-
tween two �nite element spaces are guaranteed with the help of Hierarchy Geometry
Tree (HGT) from [19]. Secondly, a complex-valued algebraic multigrid (AMG) solver is
designed for ef�ciently solving the derived linear system. It i s mainly the ef�ciency of
the solver for the linear system which determines the ef�ciency of the implicit solver,
since the linear system needs to be solved for over hundreds of thousands of times in
a classic simulation for high harmonic generation. With the �nit e element discretiza-
tion, it is known that the condition number of the matrix in the linear system is in-
versely proportional to h2, where h means the size of the mesh grids. This implies
that in the case of numerical discretization of an all-electron model, a quality precondi-
tioner is required to effectively reduce the condition number, so that the linear system
in the implicit method can be solved ef�ciently. In this paper, w e follow [10] to use
the so-called K formulation to express the complex-valued system by a blocked real-
valued form. Then a complex-valued AMG is developed for solving thelinear system,
in which the restriction and prolongation operators are designed following [6], and a
block Gauss-Seidel iterative method is used to damp out the high frequency part of the
numerical error in each level of the AMG. The numerical experiments show successfully
that the convergence behavior of the solver is not sensitive to the condition number of
the matrix in the linear system. Finally, the algorithm will be p arallelized by OpenMP
technique, to further accelerate the simulation by fully util izing the hardware resource,
i.e., a Dell Precision 7920 Tower workstation, with dual Intel(R) X eon(R) Gold 6136
CPU @ 3.00GHz (total 24 cores), and 250 Gigabytes memory. The greedy coloring al-
gorithm is used in our work to help resolving the race condition issues in, for example,
the formation of the total stiffness matrix.

In the following parts of this paper, a full description of the nume rical discretiza-
tion of the TDKS equation, including the implicit midpoint rule for the temporal dis-
cretization as well as the �nite element method for the spatial d iscretization, is given in
next section. In Section 3, three issues on the ef�cient implementation of the implicit
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method, i.e., an h-adaptive mesh method, a complex-valued AMG solver, as well as the
OpenMP parallelization of the algorithm, are discussed in detail. In Section 4, the nu-
merical convergence of the proposed method, as well as the performance of the method
in solving the TDKS equation, are checked by a variety of numerical experiments. The
conclusion and the future work are given in Section 5 �nally.

2. Numerical discretization of the TDKS equation

The temporal discretization of the TDKS equation is introduced �rstly, including
the motivation on applying the Runge-Kutta methods with Gauss-Legendre collocation
points, and a description of the midpoint scheme of the TDKS equation.

2.1. Structures of the TDKS equation and the implicit midpoi nt scheme

It is known that the following three properties are hold for the TDSE:

� It is a Hamiltonian system;

� Conservation of the probability, i.e., BN ptq
Bt � 0, where N ptq �

³
� p~x; tqd~x repre-

sents the total number of the electrons;

� The propagation of the system is time-reversal symmetry.

The Hamiltonian structure of the equation can be seen clearly by de�ning the
Hamiltonian function

H
�
	 r ; 	 i � �

1
2



	 r |H 	 r �

�
1
2



	 i |H 	 i � ; (2.1)

where 	 � 	 r � i 	 i with 	 r and 	 i representing the real and imaginary parts of
the wavefunction 	 , respectively, and   �|� ¡ is the standard bra-ket notation in the
quantum mechanics. Then the system (1.1) can be reformulated as
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BH
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in R3; (2.2)

which formally is a Hamiltonian system.
The conservation of the probability is a natural requirement in the evolution of

the quantum system, i.e., the total number of the electrons should bekept unchanged
during the whole process. In other words, if the electron number is given by N pt0qat
the initial time t0, then N ptq � N pt0qshould be always correct for any later time instant
t ¡ t0. This is equivalent to impose the condition BN ptq

Bt � 0 on N ptq. This property is
preserved well by the Schrödinger equation by the observation that

BN ptq
Bt

�
»

R3

B� p~x; tq
Bt

d~x � i
� »

R3
pH 	 q� 	 d~x �

»

R3
	 � pH 	 qd~x



: (2.3)
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It can be seen that Hermitian property of the Hamiltonian H from the Schrödinger
equation guarantees BN ptq

Bt � 0, i.e., the conservation of the probability.
It can be easily checked that for a given Hamiltonian which is not explicitly de-

pendent on time, if the wavefunction 	 ptq is the solution of the Schrödinger equation
(1.1), then the function 	 � p� tqwill satisfy the governing equation

i
B
Bt

	 � p� tq � H 	 � p� tq: (2.4)

The above property for the time-dependent Schrödinger equation iscalled T-symmetry.
Since the time-dependent density functional theory is a substitution for the many-

body TDSE in the case that the time-dependent exchange-correlationpotential is known
exactly, the TDKS equation shares the same properties mentionedabove with the TDSE.
People may refer to a recent paper [14] for the related discussion. Consequently, in
the temporal discretization of the TDKS equation, the above properties need to be
preserved well by the numerical scheme, to make the numerical results physical.

Since their advantages on resolving the stiff problems and on the storage, the single
step methods have been popular in the practical simulations, for examples, the implicit
trapezoidal scheme (also known as Crank-Nicolson scheme) and the implicit midpoint
scheme. It can be checked easily that both schemes

i) are of Op� t2q, where � t represents the step size in the temporal discretization,

ii) preserve the conservation of the probability,

iii) satisfy the time-reversal symmetry.

However, the implicit midpoint scheme is symplectic, while the implicit trapezoidal
scheme is not. Consequently, the implicit midpoint scheme is more desirable in the
simulations, in which the better performance for the long term sim ulations can be
expected. In the following, we will use the implicit midpoint sc heme to describe the
temporal discretization of the TDKS equation.

Remark 2.1. The propagators from both implicit trapezoidal scheme and implicit mid-
point scheme areunitary , from which the conservation of the probability can be shown.

Suppose that  n represents the wavefunction in the TDKS equation (1.2) at the
time instant tn , and that the next time instant is given by tn� 1 :� tn � � t with � t the
step size. Then the implicit midpoint scheme of the TDKS equationis given by

 n� 1 �
2i � � tH p� n� 1

2
q

2i � � tH p� n� 1
2
q
 n � : Un� 1

n  n ; (2.5)

where H p� qstands for the Hamiltonian operator depending on the electron density � ,
and � n� 1

2
� � j | n� 1

2 ;j |2, in which  n� 1
2 ;j represents the evaluation of the j -th wave-

function at the time instant tn� 1
2

:� tn � � t
2 .
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One issue for the above discretization (2.5) is its nonlinearity since the unknown
quantity � n� 1

2
. A classic approach for resolving the nonlinearity is to introduce a predic-

tion-correction process, as the follows:

Algorithm 2.1: Prediction-correction process on solving (2.5).

Data:  n , an initial  n� 1p:�  nq, an auxiliary ~ , and tolerance
Result:  n� 1

1 Calculate an initial � n� 1
2
;

2 do
3 Let ~ �  n� 1;
4 Solve the Eq. (2.5) to get an updated  n� 1;
5 Update � n� 1

2
;

6 while || n� 1 � ~ || ¡ tolerance;

In the while loop in the above algorithm, the quantity � n� 1
2

is updated by 1
2p� n� 1�

� nqwith the updated  n� 1 in our implementation. It is noted that the numerical error
introduced in this approximation is consistent with the implici t midpoint rule. For the
initial � n� 1

2
in Step 1, we may simply use � n for the approximation. However, this

rough approximation may cause more correction steps to obtain an accurate � n� 1.
There are two approaches to improve the initial approximation of � n� 1

2
, i.e., solving

the TDKS equation on the interval rtn ; tn� 1
2
swith some scheme, and the extrapolation

methods. Basically, extrapolation methods would be faster since no linear system needs
to be solved. However, the extrapolation methods would need more storage since more
previous solutions are needed in the implementation. With better initial guess for � n� 1

2
,

a more accurate� n� 1 and faster convergence of the prediction-correction process can
be expected. People may refer to [15] for more details about the prediction-correction
methods.

In our implementation, the implicit Euler scheme is used in the prediction step,
while a maximum number for the correction steps is also introduced to control the
ef�ciency of the simulation. In this case, the while loop would end either the condition
listed in Step 6 in the algorithm becomes false, or the number of the correction steps
exceeds the given maximum number.

2.2. The �nite element discretization of TDKS equation

In the TDKS equation (1.2), the Hamiltonian consists of kinetic energy operator
� r 2

2 , the external potential �
°

l
zl

|~x� ~R l |
, the Hartree potential

VH �
»

� p~x1; tq
|~x1 � ~x|

d~x1;

and the exchange-correlation potential vALDA .
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For the convenience of the description, we rewrite (2.5) as follows,
$
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%
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(2.6)

To derive the �nite element discretization for the above system, we �rstly introduce
the standard Sobolev space in a given domain
 € R3 by H 1 :� W 1

2 p
 q, and de�ne
V :� t � P H 1p
 q : � � 0 on B
 u. Then the variational form of (2.6) is given by: To
�nd  n� 1 PV such that
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(2.7)

We introduce the following notation for the description of the �nite e lement dis-
cretization. First of all, 
 € R3 is used to denote the computational domain, and B

is its boundary. For this domain 
 , we have a tetrahedron meshT which completely
covers the domain 
 . The meshT consists of a set of nonoverlapped tetrahedron ele-
ments, i.e., T � t TkuN tet

k� 1 , where N tet is the total number of the tetrahedron elements
in the mesh T . Then following the de�nition introduced by Ciarlet, on tetrahedr on
elementsTk ; k � 1; : : : ; N tet , we de�ne the �nite element pTk ; P1; N q, where P1 is the
set of all �rst order polynomials in three variables, and N is the set of nodal variables.
With the above notations, we can de�ne the C0 �nite dimensional subspace VT of V .

Then the discretized variational form of (2.7) is given by: To �nd  n� 1;T PVT such
that
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(2.8)

Following the K formulation proposed in [10], the unknowns are organized as
�

 r; 1
n� 1;T ;  i; 1

n� 1;T ;  r; 2
n� 1;T ;  i; 2

n� 1;T ; : : : ;  r;N gp
n� 1;T ;  i;N gp

n� 1;T

	 J
(2.9)
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Figure 1: The sparsity pattern of the matrix.

with Ngp the total number of the grid points, and the pattern of the coef�cien t matrix
has the form shown in Fig. 1.

In the K formulation form used in this paper, each black square 
 in Fig. 1 repre-
sents a2 � 2 submatrix of the form

�
a � b
b a

�
(2.10)

�

�

�
�
�

2
»

� j � kd~x � � t
» �

1
2

r � j � r � k � VKS � j � k



d~x

� t
» �

1
2

r � j � r � k � VKS � j � k



d~x 2

»
� j � kd~x

�

�
�
� ;

according to the discretized weak form (2.8). It is noted that th e determinant of the
above matrix is a2 � b2, hence that each submatrix (2.10) is always invertible.

3. Three approaches for accelerating the simulations

The ef�ciency is a main issue preventing the widely application of the implicit
solvers in the practical simulations. In the following, focusing on the proposed method
in last section, we introduce three approaches for improving the ef�ciency of the im-
plementation.
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3.1. The h-adaptive mesh method

A classic process of using the adaptive mesh methods consists of the following steps,
i.e.,

� � � solve� � � estimate� � � mark � � � re�ne � � �

In this work, the above process means that the TDKS equation (1.2) is solved �rstly
on the current �nite element space, then the distribution of the n umerical error is es-
timated, then the tetrahedron elements in the mesh are marked according to the error
estimation. Finally, a new �nite element space is built on the ne w mesh by locally re�n-
ing or coarsening the elements in the old mesh, and the new solutions are obtained by
the interpolation. In our implementation, we follow [19] to adopt th e hierarchy geom-
etry tree to manage the local re�nement/coarsening operations of the mesh grids. It is
noted that an ef�cient interpolation operation can be obtained based on this hierarchy
geometry tree. People may also refer to [2,3] for the detail.

In the following, we �rst propose a heuristic a posteriori error indicator for each
tetrahedron element in the mesh, then introduce how the h-adaptive module is embed-
ded in the numerical method proposed in the last section.

It is noted that in [26], a residual type a posteriorierror estimator for each element
has been developed for the parabolic equations. Although they are neither parabolic
nor hyperbolic for the TDSE/TDKS, we still borrow the idea in [26] to gene rate the
error indicator, which consists of two components, i.e., temporal error and spatial error.
Suppose that for a given wavefunction  ,  n and  n� 1 represent the wavefunction at
the time instants tn and tn� 1, respectively. Then the temporal error is denoted by

� t �

�

� t
¸

Tk PT

»

Tk

�
r  n� 1 � r  n

� 2d~x

� 1
2

; (3.1)

while the spatial error is denoted by

� h �

�
¸

Tk PT

� t � h2
Tk
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�
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1
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�
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�
¸

ePE

� t � he

»

e

�
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2

J e

�
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2

r  n � ~ne �
1
2

r  n� 1 � ~ne



 2

ds

� 1
2

: (3.2)

In the above formula, the Kohn-Sham potential VKS is evaluated by � n� 1
2

since the
implicit midpoint scheme is used in our method. The E represents the set of all triangle
faces in the meshT . The J epr  � ~neqrepresents the jump of the gradient of the wave-
function  across the edgee along the normal direction of e with ~ne the unit normal
vector.
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Based on (3.1) and (3.2), the error indicator in each element Tk PT is given by

� Tk �
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� 2d~x
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 2

ds

� 1
2

: (3.3)

It is noted that the factor 1
2 in front of the third term of the above formula means

equally distributing the error from the edge e P BTk to its two neighbor tetrahedron
elements.

Remark 3.1. In (3.2) and (3.3), the triangles locating on the domain boundary B
 are
not considered. The error estimation on those triangles is not trivial since the Dirichlet
boundary condition is employed in the simulation. However, since the mask function
technique is used to handle the issue of the re�ection of the wavefunction around the
domain boundary, it would be a reasonable assumption that there is no jump of the
gradient of the wavefunction across the domain boundary. Hence, it is also reasonable
to ignore the corresponding contribution on the error indicator.

The algorithm given below shows how the adaptive re�nement of the mesh grids is
embedded in Algorithm 2.1.

Algorithm 3.1: Prediction-correction process with adaptive mesh method on
solving (2.5).

Data:  n , an initial  n� 1p:�  nq, an auxiliary ~ , and tolerance
Result:  n� 1

1 Calculate an initial � n� 1
2
;

2 do
3 Let ~ �  n� 1;
4 Solve the Eq. (2.5) to get an updated  n� 1;
5 if First correction stepthen
6 Implement the adaptive mesh method;
7 end
8 Update � n� 1

2
;

9 while || n� 1 � ~ || ¡ tolerance;

In the above algorithm, the adaptive mesh method is implemented in the �rst cor-
rection step, since with a small � t and a quality � n� 1

2
, the wavefunction in this stage

is actually accurate enough. So the adaptive mesh method is onlyimplemented once
here in the whole prediction-correction process.
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3.2. The algebraic multigrid solvers

Two AMG solvers are needed in our framework, one is a real-valued AMGfor the
generation of the Hartree potential in the Hamiltonian, and the ot her one is a complex-
valued AMG for the linear system derived from the implicit scheme for the TDKS equa-
tion.

In the generation of the Hartree potential in the Hamiltonian, th e following Poisson
equation needs to be solved with the given electron density, i.e.,

#
� r 2VH � 4�� in 
 ;

VH � V b
H on B
 ;

(3.4)

where V b
H represents the Hartree potential on the domain boundary, and the multi-

pole expansion is used here for the approximation. People may referto [3, 25] and
references therein for more detail.

Suppose that the linear system derived from the above Poisson equation is given by

Ahuh � f h; (3.5)

where the subscripth denotes the size of the mesh for obtaining the stiffness matrixAh .
In an abstract description, the iteration method tries to generate a sequencepupnq

h q8
n� 0

such that uh � limnÑ8 pupnq
h q.

By introducing the error epnq
h � uh � upnq

h , the residual r pnq
h � f h � Ahupnq

h from the

n-th approximation upnq
h , and by approximating the defect equation Ahepnq

h � r pnq
h with

Âh êpnq
h � r pnq

h ; (3.6)

the next approximation upn� 1q
h is obtained by

upn� 1q
h �

�
I h � Â � 1

h Ah

	
upnq

h � Â � 1
h f h: (3.7)

Two properties are expected from Âh , i.e., Âh should be simple so that the system
Âh êpnq

h � r pnq
h can be solved ef�ciently, and the spectral radius of the iteration matrix

I h � Â � 1
h Ah is less than 1 so that the iteration is convergent.

In the multigrid framework, the Eq. (3.6) is designed by discret izing (3.4) on
a coarse mesh through the restriction operatorRH

h and the prolongation operator Ph
H ,

i.e.,
AH RH

h epnq
h � : AH epnq

H � rH :� RH
h r pnq

h : (3.8)

Then the new approximation upn� 1q
h can be expressed by

upn� 1q
h �

�
I h � Ph

H A � 1
H RH

h Ah

	
upnq

h � Ph
H A � 1

H RH
h f h: (3.9)
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Based on the above description, the two-grid iteration method is given in Algo-
rithm 3.2 below.

Algorithm 3.2: A two-grid iteration.

Data: Ah , f h , initial guess up0q
h , tol , ns, nm , and Nm .

Result: uh .

1 while ||r pnq
h ||2 ¡ tol or nm   Nm do

2 Implement certain classic iteration on the Eq. (3.5) for ns times;
3 Build the Eq. (3.8) by using RH

h ;
4 Solve the Eq. (3.8);
5 Update the solution with (3.9) by using Ph

H ;
6 Implement certain classic iteration on the Eq. (3.5) for ns times;
7 Let nm � nm � 1;
8 end

If we use Sh to denote certain classic iterative operator, the iteration matrix for
Algorithm 3.2 becomes

M tg � Sh

�
I h � Ph

H A � 1
H RH

h Ah

	
Sh: (3.10)

It is noted that the convergence of the above two-grid algorithm for the linear system
derived from the model problem (3.4) has been studied in detail, pl ease refer to [5]
and references therein. It is also noted that the two-grid method can be recursively
used, which delivers a multigrid algorithm.

It is noted that in our implementation, the generation of the restr iction and pro-
longation operators in this paper follows [6], the Gauss-Seidel iteration is used for the
smoother, and the implementation of the real-valued AMG follows [19 ].

Besides solving the Poisson equation (3.4), the AMG method is alsoemployed in
solving the complex-valued linear system derived in our implicit numerical method.
We follow [10] to use K formulation for representing the complex-valued matrix, with
the sparsity pattern shown in Fig. 1.

It can be observed that the sparsity pattern of the complex-valued matrix is same
to the real-valued one for the Poisson equation (3.4). Consequently, the AMG solver
described above for the real-valued linear system can be reused, with the modi�cation
introduced by the K formulation. Brie�y, the generation of both the restriction and
prolongation operators, and the implementation of the iteration sch eme in AMG will be
in “block” style, since each
 in Fig. 1 represents a2� 2 matrix. In our implementation,
a block Gauss-Seidel iteration scheme is used in the complex-valued AMG.

3.3. OpenMP parallelization of the algorithm

OpenMP is a mature technique for enhancing the implementationef�ciency of the
algorithm, by fully utilizing the hardware resource in a workstat ion. The research on
improving the �nite element codes by OpenMP keeps active [23].
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In our work, we mainly use OpenMP in the two operations to improve the simula-
tion. The �rst one is in the assembly of the stiffness matrix, and the second one is in
the implementation of AMG solvers.

The utilization of the OpenMP in the assembly of the stiffness matrix is not straight-
forward since the possible data racing in writing the global matri x. An effective ap-
proach on resolving the data racing is to group those nonadjacent elements, then
OpenMP can be used directly in each group for the assembly operation. In our method,
a greedy algorithm is used to generate several groups in each of which every element
is not adjacent to any other elements. It is worth mentioning that the computational
complexity of the greedy algorithm is OpN tet q, and the implementation of the algo-
rithm is ef�cient with the help of the HGT data structure for the mesh. For the OpenMP
in AMG solver, it can be trivially used in the matrix-vector produc t. In addition, if the
Jacobi iteration is used as the smoother, the parallelization of theiteration can also be
realized trivially.

In the next section, the performance of the proposed acceleration methods, as well
as the performance of the implicit solver for the TDKS equation, will be checked by
a number of numerical experiments.

4. Numerical experiments

The performance of the proposed numerical method will be shown in this section by
a number of the numerical experiments. We focus on three aspects,i.e., the ef�ciency
of the proposed complex-valued AMG solver for the linear system from the implicit nu-
merical method, the effectiveness of theh-adaptive mesh method in solving the TDKS
equation, as well as the performance of the proposed implicit numerical solver in the
long term simulations.

The hardware for the simulations is a Dell Precision T7920 Tower, with two In-
tel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz (total 24 cores), and with 256 gigabytes
memory. The software for the simulation is a C++ library AFEABIC [2 , 3] developed
and maintained by the authors. It is noted that we also use AFEABIC to calculate the
ground state of the given electronic structure, which is used in this paper as the initial
condition for the simulations of the TDKS equation.

In all simulations, the computational domain is a ball with the rad ius 50 au, and
the initial tetrahedral mesh is generated by Gmsh [13]. The ground state of the given
electronic structure is obtained by using anh-adaptive �nite element method proposed
in [2] for the Kohn-Sham density functional theory, which has been r ealized in AFE-
ABIC.

4.1. The performance of the AMG solver for the complex-value d system

To show the effectiveness of the proposed AMG solver, several atomsand molecules
are tested, and the results are shown in Table 1. The simulation process for each case
in the table can be described as follows. First of all, the ground state of the given atom
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Table 1: Comparison on the CPU time (millisecond) on solvingthe linear system by block Gauss-Seidel
iteration and by multigrid iteration, respectively. The number in (�) is the iteration numbers used.

Stru. DOFs Block GS MG

Helium 153,761 310,630 ms (6,900) 117,300 ms (42)

Lithium 357,142 1,705,477 ms (14,900) 206,213 ms (49)

Beryllium 590,998 5,272,625 ms (25,000) 297,384 ms (46)

Boron 769,228 8,363,926 ms (32,100) 341,742 ms (50)

LiH 104,469 301,458 ms (9,100) 121,277 ms (50)

Li2 159,206 452,573 ms (9,200) 132,246 ms (47)

BeH2 155,548 548,938 ms (11,400) 168,883 ms (61)

Li9 (BCC) 344,430 723,390 ms (6300) 176,541 ms (45)

CH4 398,155 5,806,147 ms (41,200) 649,829 ms (144)

H2O 508,908 10,600,067 ms (58,200) 916,032 ms (175)

C6H6 1,950,290 29,832,561 ms (40,900) 1,354,015 ms (90)

or molecule is obtained by an h-adaptive �nite element method [2]. Then with this
ground state as the initial state, the electronic structure system is propagated forward
by using the proposed numerical method in this paper. We record theCPU time (in
millisecond, ms) and the iteration steps needed for solving a complex-valued linear
system by using the proposed complex-valued AMG solver. As a comparison, the cor-
responding results from the block Gauss-Seidel iteration are alsolisted. It is noted that
the number shown in the parenthesis is the total number of the iteration steps. In all
cases, theL 2 norm of the residual of the system is used to design the stop criterion,
and the tolerance is 1:0 � 10� 12. In addition, the parameter ns in Algorithm 3.2 is 3 in
all simulations.

Before introducing the results in Table 1, it is noted that the ground state for
each given atom or molecule is calculated accurately with our h-adaptive �nite ele-
ment method in [2], which consists of a self-consistent �eld (SCF) iteration for the lin-
earization of the Kohn-Sham equation, and the locally optimal blocked preconditioned
conjugate gradient (LOBPCG) method for solving the generalizedeigenvalue problem.
In all cases, the residual for each eigenpair is used to designthe stop criterion for
LOBPCG method with the tolerance1:0� 10� 8, and the L 2 norm of the difference from
two adjacent iterations is used to design the stop criterion for SCF iteration with the
tolerance 1:0 � 10� 4. Finally, in the process of the h-adaptive re�nement of the mesh,
the simulation is stopped when the total energy of the electronic structure changes
within 0:1% compared with the total energy obtained from last mesh. As an exam-
ple, Fig. 2 shows the results from the ground state simulation for benzene molecule,
including the isosurfaces of the electron density and the mesh slice on the x-y plane
around the molecule (in Fig. 2, left two sub�gures), and the conve rgence history of
the total energy of the benzene molecule with the h-adaptive re�nement of the mesh
(in Fig. 2, right �gure). It is noted that the reference value f or the total energy of the
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Figure 2: Calculation of the ground state for benzene molecule. Upper left: isosurface of the electron
density. Bottom left: the mesh pro�le on thex-y plane around the molecule. Right: the convergence of the
total energy of the benzene with theh-adaptive re�nement of the mesh.

benzene molecule is� 230:85 au from CCCBDB, from which we can see the numerical
convergence of our simulation for benzene molecule.

Now we are ready to introduce the results in Table 1, and two main observations
can be made from the table. First of all, the proposed complex-valued AMG solver
in this paper signi�cantly accelerates solving the linear system, compared with the
block Gauss-Seidel iteration, for all cases. In most cases, no more than 10%CPU time is
needed by AMG solver to solve the linear system, compared with the block Gauss-Seidel
iteration. It is worth mentioning that in benzene case, the percentage is only around
4:5%. The second observation is that with the same parameters such asthe tolerance
for the stop criterion, the performance of the AMG solver is more stable than that of
the block Gauss-Seidel iteration, for different electronic structure and total amount of
the grid points in the mesh. This can be seen clearly from those numbers in the paren-
theses, i.e., the variance of the iteration numbers from block Gauss-Seidel iteration is
309898000, while it is 2066:1 for the proposed AMG solver in this paper.

It is known from the classical analysis for the multigrid method tha t the perfor-
mance of the method is not sensitive to the condition number of the matrix for the
convergent cases. We would like to mention that the complex-valuedAMG solver pro-
posed in this paper also has such property, which can be shown clearly in Table 2. It is
noted that the parameter ns in Algorithm 3.2 is 6 in all simulations in the table.

It is noted that in Table 2, for each atom or molecule, the different n umber of the
grid points is from using different tolerance for h-adaptive re�nement of the mesh in
each simulation, and the tolerance for each simulation is given in the parenthesis. The
nonsensitivity of the proposed AMG solver to the condition number of the matrix can
be observed clearly from the above table, i.e., the change of the total number of the
iteration needed for different simulations is small.

Before getting involved in the next subsection, we would also like to deliver the
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Table 2: The total iteration numbers needed by AMG for each electronic structure with di�erent number of
the grid points.

Stru. Grid Points Iter. Stru. Grid Points Iter.

Li 70,963 (5:0 � 10� 3) 38 CH4 137,533 (2:0 � 10� 2) 68
118,311 (3:0 � 10� 3) 36 398,155 ( 1:0 � 10� 2) 89

357,142 (1:0 � 10� 3) 36 575,040 ( 8:0 � 10� 3) 86
469,682 (8:0 � 10� 4) 37 963,547 ( 5:0 � 10� 3) 78

LiH 104,469 (5:0 � 10� 3) 37 H2O 50,908 (2:0 � 10� 2) 102

172,878 (3:0 � 10� 3) 30 255,467 ( 1:0 � 10� 2) 89
544,501 (1:0 � 10� 3) 29 644,037 ( 8:0 � 10� 3) 82

692,392 (8:0 � 10� 4) 28 1,044,008 ( 5:0 � 10� 3) 84

results of a study on the role of the number ns in Algorithm 3.2 played in the complex-
valued AMG solver. It is known that the smoother Sh in Algorithm 3.2 is used to damp
out the high frequency part of the numerical error. Below in Table 3 , the results of the
performance of the proposed AMG solver obtained from different ns in Algorithm 3.2
are listed for several atoms and molecules.

From Table 3, it can be observed from all cases that with the increment of the
parameter ns in Algorithm 3.2, the iteration steps needed for solving the linear system
decrease. For example, in the simulation of H2O molecule, when we usens � 3, the
number of the iteration steps is 175, and the corresponding CPU time is916; 032 ms.
When we increase the parameterns from 3 to 9, the number of the iteration steps
becomes78, and the CPU time becomes598; 884 ms. That means such change of the
parameter ns allows us to use around 45% iteration steps and around 65% CPU time
to solve the same linear system. However, it does not mean that the ef�ciency can
always be improved by increasingns. For example, in the same case for H2O molecule,
ns � 18 brings us smaller number of the iteration steps, but more CPU time. Asimilar
observation can be made for all cases in the above table. It should be pointed out that
the best choice of the parameterns in Algorithm 3.2 should be problem dependent.
However, from the results shown in Table 3 and based on our numerical experience,
ns � 9 is fairly a good choice. Hence, in the following simulations, we wil l keep using
this value.

So far, we have discussed the performance of the proposed AMG solver in solving
the linear system derived from the implicit temporal discretiz ation. In the following,
the effectiveness of the proposedh-adaptive mesh method will be demonstrated by two
examples.

4.2. The effectiveness of the h-adaptive mesh method

We use two arti�cial examples to show the effectiveness of the proposedh-adaptive
mesh method, as follows.

In the �rst example, the molecule is an H 2, with the initial positions for two nuclei
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Table 3: The performance of the proposed AMG solver with di�erent ns in Algorithm 3.2.

Stru. ns Iter. CPU time (ms)
Helium 3 42 117,300

6 31 91,027
9 25 85,237
12 22 81,692
15 20 80,420
18 19 85,462
21 18 86,785

Lithium 3 49 206,213
6 36 177,185
9 31 182,271
12 27 180,271
15 25 188,784

LiH 3 50 121,277
6 37 95,607
9 31 87,030
12 28 87,707
15 25 86,412
18 24 87,727
21 22 86,938
24 21 87,845
27 21 93,874
30 20 93,544
33 19 93,906

Stru. ns Iter. CPU time (ms)
H2O 3 175 916,032

6 102 670,123
9 78 598,884
12 66 618,059
15 59 607,581
18 54 622,983
21 50 641,419

CH4 3 144 649,829
6 89 493,016
9 71 460,736
12 62 467,982
15 56 470,987

H2O 3 175 916,032
6 102 670,123
9 78 598,884
12 66 618,059
15 59 607,581
18 54 622,983

Li9 3 45 176,541
BCC 6 35 166,746

9 29 160,826
12 26 177,077
15 24 180,401

p� 0:7209; 0:0; 0:0q and p0:7209; 0:0; 0:0q, respectively. The simulation consists of two
processes. Firstly, the ground state of the H2 molecule is obtained by solving the Kohn-
Sham equation with an h-adaptive �nite element method in AFEABIC [2]. In the second
process, the TDKS equation is solved with the proposed numerical method in this paper.
To make the dynamics of the system nontrivial, the positions of two nuclei change to
p0:0; � 0:7209; 0:0q and p0:0; 0:7209; 0:0q, respectively, at the initial time.

The dynamics of the H2 molecule is shown in Fig. 3. In the top row, the iso-
surfaces of the electron density of the molecule are shown at the time instants t �
0; 0:05; 0:1; 0:2, respectively, while they are the corresponding mesh grids around the
molecule in the bottom row. Please note that the mesh on thex-y plane is shown here
for clearly demonstrating the dynamics change of the mesh grids. It can be observed
clearly that with a sudden change of the positions of two nuclei, the distribution of the
electron density changes with the time evolution, under the Coulomb interaction. With
the help of the proposed h-adaptive mesh method, this transition process is resolved
very well.

The second example is similar to the �rst one, in which the molecule becomes a bo-
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Figure 3: The isosurfaces of an H2 molecule (top), and the corresponding mesh around the molecule
(bottom), at t � 0; 0:05; 0:1; 0:2 (from left to right), respectively. The results are restricted in the box
r� 2:5au; 2:5aus � r� 2:5au; 2:5aus in the x-y plane.

rane molecule (BH3). The position of the nucleus of the boron atom is the
origin point ( 0; 0; 0), while the initial positions of the nuclei for three hydrogen atoms
are (0:; 2:248773926; 0:), ( 1:947551604; � 1:124386963; 0:), and ( � 1:947551604;
� 1:124386963; 0:), respectively. After the ground state of the borane molecule is ob-
tained, the nuclei positions for three hydrogen atoms are changed to (0:; � 2:248773926;
0:), ( 1:947551604; 1:124386963; 0:), and ( � 1:947551604; 1:124386963; 0:), i.e. their sym-
metric points w.r.t. the x-axis in the x-y plane. Then the dynamics of the electron den-
sity is obtained by solving the TDKS equation with the proposed numerical method.
The numerical results at the time instants t � 0; 0:36; 0:6, and 1:0, are shown in Fig. 4.
Again, it can be observed that the transition process caused by the sudden change of
the positions of the nuclei is resolved very well, with our h-adaptive mesh method.

It is worth mentioning that the proposed complex-valued AMG solver works very
stable in both simulations, i.e., in the whole simulation process of the H2 molecule,
only around 5 steps of the multigrid iteration are needed to solve the complex-valued
linear system with the stop criterion 1:0� 10� 10 for the residual, while it is 15multigrid
iteration steps for the borane molecule.

4.3. The performance on long term simulations

In this subsection, we test the performance of the proposed numerical framework
on long-term simulation of the time dependent Kohn-Sham equation. To check the
ability of the numerical scheme on preserving the structures mentioned in Section 2.1,
two kinds of the numerical experiments are implemented below.

The �rst kind of numerical experiments is to show the property of th e numerical
scheme on preserving the symplectic structure of the system. It is noted from (2.1) that
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Figure 4: The isosurfaces of a Borane (BH3) molecule (top), and the corresponding mesh around the
molecule (bottom), at t � 0; 0:36; 0:6; 1:0 (from left to right), respectively. The results are restricted in the
box r� 5au; 5aus � r� 5au; 5aus in the x-y plane.

the conservation of the Hamiltonian function is equivalent to the conservation of the
total energy of the system. Hence, the simulation process can be described as follows.
First of all, the ground state of the electronic system is calculated by using anh-adaptive
�nite element framework. Then by using this ground state as an ini tial condition, the
electronic structure system is propagated freely. In this case, both the norm of the
wavefunction and the total energy of the system should be preserved. The ability of
the proposed numerical method in this paper on preserving the aboveproperties is well
demonstrated by the results of the H2 molecule. The ground state of the H2 molecule
is obtained �rst. Then without the initial perturbation, the syste m is propagated by
solving the TDKS equation with the proposed numerical method for over 1200 au in
time, and the conservation of the total energy and the total number of the electrons is
preserved very well. Please see Fig. 5.

The second kind of the numerical experiments is devoted to the conservation of
the norm of the wavefunction under an initial perturbation on the sys tem. Speci�cally,
the ground state of the electronic structure is calculated �rst . Then the phase of the
ground state wavefunction is shifted by  � e� ikz  , where k is the amplitude of the
perturbation, and z denotes the polarization direction. After that, we let the system
evolve freely, and record the time-dependent dipole moment, and the norm of the
wavefunction.

In Fig. 6, it obviously is seen that the number of the electrons for a helium atom,
which should be 2, is preserved very well even for the long term simulations. The
history of the time dependent dipole is also recorded in the simulation, and is shown
in Fig. 6 (bottom one). Similar results can be found for the simulation s of the LiH
molecule (Fig. 7), and the methane molecule (Fig. 8).
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Figure 5: The results for H2 molecule. Top: Number of the electrons in the system with thetime evolution,
which should be 2 for the H2 molecule. Bottom: the history of the total energy with the time evolution.
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Figure 6: Top: Number of the electrons in the system with the time evolution, which should be 2 for the
helium atom. Bottom: the history of the time dependent dipole in the simulation.
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Figure 7: Top: Number of the electrons in the system with the time evolution, which should be 4 for the
LiH molecule. Bottom: the history of the time dependent dipole in the simulation.
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5. Conclusion

In this paper, an implicit solver is proposed for the TDKS equation. The solver con-
sists of an implicit midpoint scheme for the temporal discretization, and a linear �nite
element scheme for the spatial discretization. To resolve the ef�ciency issue of the pro-
posed implicit solver, a complex-valued AMG solver is designed foref�ciently solving
the linear system from the implicit scheme, an h-adaptive mesh method is developed
based on a hierarchy geometry tree and a residual typea posteriori error estimation
technique, and the algorithm is parallelized by OpenMP. A number of numerical exper-
iments successfully show the effectiveness of the proposed method.

Quality long term simulation for a given electronic structure is necessary in a variety
of applications such as the photonabsorption spectra calculation, simulations on the
high harmonic generation, and molecular dynamics. A study towards these applications
will be reported in our forthcoming paper.
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