
Numer. Math. Theor. Meth. Appl. Vol. 15, No. 4, pp. 1009-1040

doi: 10.4208/nmtma.OA-2022-0007s November 2022

Efficient Hermite Spectral-Galerkin Methods for

Nonlocal Diffusion Equations in Unbounded

Domains

Huiyuan Li1, Ruiqing Liu1,2 and Li-Lian Wang3,*

1 State Key Laboratory of Computer Science/Laboratory of Parallel

Computing, Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100190, China
3 Division of Mathematical Sciences, School of Physical and Mathematical

Sciences, Nanyang Technological University, 637371, Singapore

Received 18 January 2021; Accepted (in revised version) 21 September 2021

Abstract. In this paper, we develop an efficient Hermite spectral-Galerkin method

for nonlocal diffusion equations in unbounded domains. We show that the use of the

Hermite basis can de-convolute the troublesome convolutional operations involved
in the nonlocal Laplacian. As a result, the “stiffness” matrix can be fast computed

and assembled via the four-point stable recursive algorithm with O(N2) arithmetic
operations. Moreover, the singular factor in a typical kernel function can be fully

absorbed by the basis. With the aid of Fourier analysis, we can prove the convergence

of the scheme. We demonstrate that the recursive computation of the entries of the
stiffness matrix can be extended to the two-dimensional nonlocal Laplacian using

the isotropic Hermite functions as basis functions. We provide ample numerical

results to illustrate the accuracy and efficiency of the proposed algorithms.
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1. Introduction

Mathematical models involving nonlocal operators such as fractional integrals/de-

rivatives, fractional Laplacian and nonlocal Laplacian, have proven to be of great value

and superior to conventional models in modeling many abnormal physical phenomena

and engineering processes [6, 8]. Although these nonlocal operators are defined in
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different senses, they have interwoven connections, and share some common numerical

difficulties, e.g., the global dependence and the involvement of singular kernels. In

general, a nonlocal operator takes the form

LKu(x) = P.V.

∫

Rd

(
u(x)− u(y)

)
K
(
|x− y|

)
dy, x ∈ R

d, (1.1)

where the kernel K : Rd → (0,∞) satisfies

γK ∈ L1(Rd) with γ(z) = min(1, |z|2),
∃ θ, s ∈ (0, 1) such that K(z) ≥ θ|z|−(d+2s), z ∈ R

d \ {0}.
(1.2)

For example, for the hypersingular integral fractional Laplacian (−∆)s, we have

K(η) = 22ssΓ(s+ d/2)

πd/2Γ(1− s) η−(d+2s). (1.3)

The nonlocal Laplacian operator generally reads

Lδ[u](x) =
∫

Bd
δ

(
u(x+ s)− u(x)

)
γδ
(
|s|
)
ds, x ∈ R

d. (1.4)

Here, γδ(z) is a nonnegative compactly supported kernel whose support is contained in

[0, δ] and B
d
δ is a d-dimensional ball of radius δ.

The properties and applications of the nonlocal operator have been extensively in-

vestigated. We refer to [8–10] for a comprehensive exposition of the nonlocal calculus

and nonlocal diffusion problems with volume constraints. The δ-compatible studies

(i.e., the limit case when δ → 0) at both continuous and discrete levels were conducted

in [29, 30] and some other literature. In fact, when δ → ∞, it demonstrates that

the nonlocal operator can become fractional Laplacian operator in [7]. Many meth-

ods and schemes have been exploited to approximate the nonlocal operator, such as

domain decomposition method [2], asymptotically compatible schemes [31], discon-

tinuous Galerkin methods [32], and Fourier spectral method [12] among others. Not

restricted to these methods, more attempts have been made in studying the solutions of

various equations comprising the nonlocal operator, including nonlocal equations with

Dirichlet boundaries [15], nonlocal wave equations [4] and nonlocal Allen-Cahn type

equations [5].

While most existing works are on the nonlocal problems in bounded domains (and

many are for one spatial dimension), there has been much less concern about nonlocal

models in the unbounded domain, where such nonlocal operators are naturally set

without complications from the boundary. It is noteworthy that a nonlocal diffusion

equation on the real line is considered in [36], where the infinite interval was reduced

to a finite one by an artificial layer based on the z-transform. The study of the nonlocal

analogue of artificial boundary conditions/layers is also a subject of interest [11, 13,

35], but the rigorous error analysis and many other aspects are still worthy of deeper

investigation.
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In this paper, we propose an efficient accurate spectral method to directly solve

nonlocal equations in R
d with d = 1, 2, though the essential idea can be extended to

d = 3 (but it is more involved). To fix the idea, we consider the model equation

−Lδu(x) + λu(x) = f(x), x ∈ R, lim
|x|→∞

u(x) = 0, (1.5)

where λ > 0, and the nonlocal operator is defined as

Lδu(x) =

∫ δ

−δ

(
u(x+ s)− u(x)

)
γδ
(
|s|
)
ds (1.6)

with γδ(·) being a non-negative radial nonlocal kernel such that

γδ(s) =
ωδ(s)

s2
, 0 < ωδ(s) ≤

Cδ

sµ
, s ∈ (0, δ), µ ∈ [0, 1) (1.7)

for some positive constant Cδ > 0. We find readily that

−
∫ ∞

−∞
Lδu(x)v(x)dx

=

∫ δ

0

[∫ ∞

−∞

(
u(x+ s)− u(x)

)(
v(x+ s)− v(x)

)
dx

]
γδ(s)ds.

It is seen that the main difficulty lies in the convolution and the singular kernel. The

key to the efficiency of the algorithm to be developed resides in that

(i) the Hermite basis can analytically de-convolute the inner integral, and the entries

of the stiffness matrix can be computed by some recursive formulas;

(ii) the typical singularity of the kernel can be absorbed in the computation.

Accordingly, the cost for evaluating the stiffness matrix amounts to O(N2). As we

shall see in both algorithm development and error analysis, the appealing property

of the Hermite functions under the Fourier transform becomes an important piece of

the puzzle. We remark that there has been much recent interest in Hermite spectral

methods for PDEs involving usual or integral fractional Laplacian in unbounded do-

mains [3,20,21,24,28,34] (also see [25,27] for rational approximation). However, it

is unknown if the Hermite method is equally or more efficient for the nonlocal Lapla-

cian. In what follows, we aim at giving an affirmative answer to this.

The rest of the paper is organised as follows. In Section 2, we collect some relevant

properties of Hermite and Laguerre functions, which are important for the development

of efficient spectral algorithms. In Section 3, we present the Hermite spectral-Galerkin

approximation scheme with a detailed implementation and rigorous error analysis in

one dimension. In Section 4, we provide ample numerical results to show the accu-

racy and efficiency of the proposed method. In Section 5, we extend the algorithm to

two-dimensional setting and validate the recursive formula for the computation of the

entries of the stiffness matrix.
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2. Properties of Hermite and Laguerre functions

We present some important formulas of Hermite functions together with the closely

connected Laguerre polynomials that are crucial for the construction of efficient spec-

tral algorithm. Throughout this paper, we denote by R,Z,N0 and Z
− the set of real

numbers, integers, nonnegative integers and negative integers, respectively. We also

denote by ⌊a⌋ the largest integer ≤ a, and by a the negative part of a, i.e., a =
max(−a, 0).

2.1. Hermite polynomials/functions

We review some properties of the Hermite polynomials, which can be found in

various resources (see, e.g., [1,26]). The Hermite polynomials Hn(x), n ∈ N0, defined

on R := (−∞,∞), are orthogonal with respect to the Hermite weight function ω(x) =
e−x2

, namely,

∫ ∞

−∞
Hm(x)Hn(x)ω(x)dx = hnδmn, hn :=

√
π2nn!, m, n ∈ N0. (2.1)

The Hermite polynomials satisfy the three-term recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1, H0(x) = 1, H1(x) = 2x. (2.2)

Note that Hn(x) is odd (resp. even) for n odd (resp. even), and we have

Hn(−x) = (−1)nHn(x), H2n+1(0) = 0, H2n(0) = (−1)n (2n)!
n!

. (2.3)

The Hermite polynomials satisfy the derivative relation

∂kxHn(x) =
2kn!

(n− k)!Hn−k(x), n ≥ k ≥ 1, (2.4)

where we denoted the usual derivatives by ∂kx = dk

dxk . It is important to point out that

the polynomial Hn(x) grows exponentially with respect to x with the upper bound

(cf. [1])

|Hn(x)| < c2
n
2

√
n!e

x2

2 , c ≈ 1.086435. (2.5)

Moreover, it has the asymptotic behaviour for large n and fixed x on any finite interval

(cf. [22])

Γ(n/2 + 1)

n!
e−

x2

2 Hn(x)

= cos
(√

2n+ 1x− nπ

2

)
+

x3

6
√
2n+ 1

sin
(√

2n + 1x− nπ

2

)
+O(n−1). (2.6)
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The exponential growth of Hermite polynomials causes severe numerical instability,

and makes the basis unsuitable for approximating functions with decay at infinity.

In practice, we employ the Hermite functions with a tunable scaling parameter

α > 0,

Ĥ(α)
n (x) =

√
α

hn
e−

α2x2

2 Hn(αx), x ∈ R. (2.7)

By (2.1), they are mutually orthogonal, i.e.,

∫ ∞

−∞
Ĥ(α)

n (x)Ĥ(α)
m (x) dx = δmn. (2.8)

The Fourier transform of the Hermite function is still a Hermite function but with

a different scaling factor.

Lemma 2.1. We have the explicit formula for the Fourier transform of the Hermite func-

tions

F
[
Ĥ(α)

n

]
(ξ) =

∫ ∞

−∞
Ĥ(α)

n (x)e−iξxdx = (−i)n
√
2πĤ

1
α
n (ξ). (2.9)

Proof. Using the integral formula of the Hermite polynomials (cf. [16, Eq. 7.376])

∫ ∞

−∞
eixyHn(x)e

−x2

2 dx =
√
2πine−

y2

2 Hn(y), (2.10)

and the variable substitutions: x = αt and y = − ξ
α , we can obtain (2.9) from (2.3),

(2.7) and the above identity immediately.

The convolution of two functions is defined by

(f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x− y)dy.

Using Lemma 2.1, we can derive the following convolution property, which is of para-

mount importance for the spectral algorithm to be developed.

Theorem 2.1. For α > 0, we have

[
Ĥ(α)

n ∗ Ĥ(α)
m

]
(x) = Y (α)

m,n(x)

:=

min(m,n)∑

l=0

(−1)l 2l l!√
2m+nm!n!

(
m

l

)(
n

l

)
(αx)m+n−2le−

(αx)2

4 . (2.11)

Proof. Using the convolution property of Fourier transform and the formula (2.9),

we find

F
[
Ĥ(α)

m ∗ Ĥ(α)
n

]
= F

[
Ĥ(α)

m

]
×F

[
Ĥ(α)

n

]
= 2(−i)m+nπĤ

1
α
m(ξ)Ĥ

1
α
n (ξ). (2.12)



1014 H. Li, R. Liu and L. Wang

Using the product formula of Hermite polynomials (cf. [22])

Hn(ξ)Hm(ξ) =

min(m,n)∑

l=0

(
m

l

)(
n

l

)
2ll!Hm+n−2l(ξ), (2.13)

we obtain from (2.7) that

Ĥ
1
α
m(ξ)Ĥ

1
α
n (ξ) =

min(m,n)∑

l=0

√
hm+n−2l

αhmhn

(
m

l

)(
n

l

)
2ll!e−

ξ2

2α2 Ĥ
1
α
m+n−2l(ξ). (2.14)

Recall the identity of the Hermite polynomials (cf. [22, 18.18.23])
∫ ∞

−∞
e−xzHn(x)e

−x2
dx =

√
π(−z)ne z2

4 (2.15)

for any complex z. Consequently, we find the inverse Fourier transform

F
−1

[
e−

ξ2

2α2 Ĥ
1
α
m+n−2l(ξ)

]
(x)

=
1

2π

∫ ∞

−∞
eiξxe−

ξ2

2α2 Ĥ
1
α
m+n−2l(ξ)dξ

=
1

2π

1√
αhm+n−2l

∫ ∞

−∞
eiξxe−

ξ2

α2Hm+n−2l

(
ξ

α

)
dξ

=
1

2π

√
α√

hm+n−2l

∫ ∞

−∞
eiαξxHm+n−2l(ξ)e

−ξ2dξ

=

√
αim+n−2l

2
√
πhm+n−2l

(αx)m+n−2le−
(αx)2

4 . (2.16)

Applying the inverse Fourier transform to both sides of (2.12), we deduce from (2.14)-

(2.16) that

(
Ĥ(α)

m ∗ Ĥ(α)
n

)
(x) =

min(m,n)∑

l=0

√
π(−1)l2ll!√
hmhn

(
m

l

)(
n

l

)
(αx)m+n−2le−

(αx)2

4 . (2.17)

Then we obtain (2.11) directly by substituting the constants hm and hn into (2.17).

2.2. Generalized Laguerre polynomials

Now we introduce generalized Laguerre polynomials and explore their connections

with Hermite polynomials/functions. Let us first recall the definition of classic Laguerre

polynomials for µ > −1,

Lµk(x) =
k∑

ν=0

(µ+ ν + 1)k−ν

(k − ν)!ν! (−x)ν , k = 0, 1, . . . . (2.18)
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This explicit representation furnishes the extension of Lµk(x) to arbitrary µ ∈ R, which

are referred to as the generalized Laguerre polynomials (cf. [19]). Specifically, we have

Lµ0 (x) = 1, Lµ1 (x) = µ+ 1− x.

Generalized Laguerre polynomials satisfy the following recurrence relations:

Lµn(x) = Lµ+1
n (x)− Lµ+1

n−1(x), (2.19)

xLµn(x) = (n+ µ)Lµ−1
n (x)− (n+ 1)Lµ−1

n+1(x) (2.20)

= −(n+ µ)Lµn−1(x) + (2n+ µ+ 1)Lµn(x)− (n+ 1)Lµn+1(x). (2.21)

Moreover, generalized Laguerre polynomials for µ ∈ Z
− ∪ (−1,∞) are orthogonal with

respect to the weight function e−xxµ,

∫ ∞

0
Lµk(x)L

µ
j (x)e

−xxµdx =
Γ(k + µ+ 1)

k!
δj,k, j, k ≥ ⌊µ ⌋. (2.22)

Besides, the flection property holds for any µ ∈ Z,

Lµk(x) = (−x)−µΓ(k + µ+ 1)

k!
L−µ
k+µ(x), k ≥ µ . (2.23)

Generalized Laguerre polynomials and Hermite polynomials/functions are closely

connected. On the one hand, Hermite polynomials can be entirely reduced to Laguerre

polynomials,

H2k+µ(x) = (−1)k22k+µm!xµLµ−
1
2

k (x2), k ≥ 0, µ = 0, 1.

One the other hand, the following lemma states that the convolution of two Hermite

functions in Theorem 2.1 is actually a generalized Hermite function which can be rep-

resented by generalized Laguerre polynomials.

Lemma 2.2. It holds that

Y (α)
m,n(x) = (−1)m

√
m!

n!

(
αx√
2

)n−m

e−
(αx)2

4 Ln−m
m

(
(αx)2

2

)

=





(−1)m
√
m!

n!

(
αx√
2

)n−m

e−
(αx)2

4 Ln−m
m

(
(αx)2

2

)
, n ≥ m,

(−1)n
√
n!

m!

(
αx√
2

)m−n

e−
(αx)2

4 Lm−n
n

(
(αx)2

2

)
, m ≥ n.

(2.24)

Proof. Indeed, one readily derives (2.24) from (2.11), (2.18) and (2.23).

Remark 2.1. Similar results are established by Lasser et al. [18] for the Wigner trans-

form of Hermite functions.
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3. Hermite spectral-Galerkin method: implementation and error analysis

In this section, we introduce an efficient spectral-Galerkin method for PDEs with

nonlocal operators and then give some details on its implementation.

We consider the problem (1.5). Define the energy space as

H1
δ(R) :=

{
u ∈ L2(R) :

∫ ∞

−∞

∫ δ

0

(
u(x+ s)− u(x)

)2
γδ(s) dsdx <∞

}
, (3.1)

which is equipped with the semi-norm

|u|H1
δ
=

{∫ ∞

−∞

∫ δ

0
|u(x+ s)− u(x)|2γδ(s) dsdx

} 1
2

, (3.2)

and the norm

‖u‖H1
δ
=
(
|u|2H1

δ
+ ‖u‖2

) 1
2
, ‖u‖2 =

∫ ∞

−∞
|u(x)|2 dx. (3.3)

We further introduce the bilinear form

Bδ(u, v) =

∫ ∞

−∞

∫ δ

0

(
u(x+ s)− u(x)

)(
v(x+ s)− v(x)

)
γδ(s) dsdx

+ λ

∫ ∞

−∞
u(x)v(x) dx, ∀u, v ∈ H1

δ(R). (3.4)

By the Plancherel theorem together with the transition property of the Fourier trans-

form: F [u(· + s)](ξ) = e−iξsF [u](ξ), we find that

Bδ(u, v) =

∫ δ

0

[
1

2π

∫ ∞

−∞

∣∣e−iξs − 1
∣∣2F [u](ξ)F [v](ξ)dξ

]
γδ(s) ds

+
λ

2π

∫ ∞

−∞
F [u](ξ)F [v](ξ) dξ

=
1

2π

∫ ∞

−∞
F [u](ξ)F [v](ξ)

(
λ+ 2 Iδ(ξ)

)
dξ, ∀u, v ∈ H1

δ(R).

This identity implies

‖u‖H1
δ
=

(
1

2π

∫ ∞

−∞

(
2Iδ(ξ) + 1

)∣∣F [u](ξ)
∣∣2dξ

)1
2

,

Iδ(ξ) :=

∫ δ

0
(1− cos ξs)γδ(s)ds.

(3.5)

This motivates us to extend the Hilbert space H1
δ(R) to any arbitrary order ̺ > 0,

H̺
δ(R) =

{
u ∈ L2(R) : ‖u‖H̺

δ
<∞

}
,

‖u‖H̺
δ
:=

(
1

2π

∫ ∞

−∞

(
2Iδ(ξ) + 1

)̺ ∣∣F [u](ξ)
∣∣2dξ

)1
2

.
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The weak form of (1.5) reads: to find u ∈ H1
δ(R) such that

Bδ(u, v) = (f, v), ∀v ∈ H1
δ(R). (3.6)

Lemma 3.1. The problem (3.6) admits a unique solution u ∈ H1
δ(R) if f ∈ (H1

δ(R))
′,

‖u‖H1
δ
≤ max(1, λ−1)‖f‖H1

δ
′ . (3.7)

Furthermore, if u ∈ H̺
δ(R) with ̺ > 0, we have u ∈ H̺+2

δ (R) and

‖u‖H̺+2
δ
≤ min(1, λ−1)‖f‖2H̺

δ
. (3.8)

Proof. It is evident that H1
δ(R) ⊆ L2(R) and

Bδ(u, v) ≤ max(1, λ)‖u‖H1
δ
‖v‖H1

δ
, ∀u, v ∈ H1

δ(R), (3.9)

Bδ(u, u) ≥ min(1, λ)‖u‖2H1
δ
, ∀u ∈ H1

δ(R). (3.10)

Thus (3.7) is a direct consequence of the Lax-Milgram lemma.

Moreover, employing the transition property

F [u(· + s)](ξ) = e−iξs
F [u](ξ)

of the Fourier transform we find that

F [f ](ξ) = F [−Lδu+ λu](ξ)

=

∫ δ

0
F
[
− u(·+ s) + 2u(·)− u(· − s)

]
(ξ)γδ(s) ds+ λF [u](ξ)

=
[
2Iδ(ξ) + λ

]
F [u](ξ).

Using the Parseval’s identity, we further find

min(1, λ)‖u‖2
H̺+2

δ

≤ 1

2π

∫ ∞

−∞

[
2Iδ(ξ) + 1

]̺[
2Iδ(ξ) + λ

]2∣∣F [u](ξ)
∣∣2 dξ

=
1

2π

∫ ∞

−∞

[
2Iδ(ξ) + 1

]̺∣∣F [f ](ξ)
∣∣2 dξ = ‖f‖2H̺

δ
.

This gives the regularity theory (3.8) of the solution to the nonlocal problem (3.6).

The Hermite spectral-Galerkin scheme for (1.5) is to find

uN ∈ VN := span
{
Ĥ(α)

n : 0 ≤ n ≤ N
}

(3.11)

such that

Bδ(uN , ψ) =
(
ÎNf, ψ

)
, ∀ψ ∈ VN , (3.12)

where ÎNf ∈ VN is the Lagrange interpolation associated with the Hermite functions

at N + 1 Hermite-Gauss points (cf. [23]), i.e.,
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[
ÎNf

]
(
x
(N)
k

α

)
= f

(
x
(N)
k

α

)
, k = 0, 1, . . . , N

with x
(N)
0 < x

(N)
1 < · · · < x

(N)
N being the zeros of the Hermite polynomial HN+1(x).

It is evident that by the Lax-Milgram lemma, both (3.6) and (3.12) admit a unique

solution for any fixed δ > 0.

3.1. Implementation

To form the matrix form of (3.12), we write uN (x) =
∑N

n=0 ûnĤ
(α)
n (x), and denote

û = (û0, û1, · · · , ûN )t, f = (f0, f1, · · · , fN )t, fn =
(
ÎNf, Ĥ

(α)
n

)
, (3.13)

so the linear system of (3.12) takes the form

(S + λI)û = f , (3.14)

where the mass matrix is identity due to the orthogonality (2.8). We now compute the

stiffness matrix

Sm,n =

∫ δ

0
Φ(α)
m,n(s)γδ(s) ds, (3.15)

where

Φ(α)
m,n(s) :=

∫ ∞

−∞

(
Ĥ(α)

n (x+ s)− Ĥ(α)
n (x)

)(
Ĥ(α)

m (x+ s)− Ĥ(α)
m (x)

)
dx

= 2

∫ ∞

−∞
Ĥ(α)

n (x)Ĥ(α)
m (x)dx−

∫ ∞

−∞
Ĥ(α)

n (x+ s)Ĥ(α)
m (x) dx

−
∫ ∞

−∞
Ĥ(α)

n (x)Ĥ(α)
m (x+ s) dx. (3.16)

We infer from (2.3) and (2.11) that
∫ ∞

−∞
Ĥ(α)

m (x)Ĥ(α)
n (s+ x) dx = (−1)mY (α)

m,n(s) = (−1)mY (α)
n,m(s). (3.17)

Thus, by (2.8), (3.16) and (3.17),

Φ(α)
m,n(s) = 2δmn −

[
(−1)m + (−1)n

]
Y (α)
m,n(s), s ∈ (0, δ), (3.18)

which implies Φ
(α)
m,n is symmetric with respect to m and n, and Φ

(α)
m,n(s) = 0 if m + n is

odd.

Lemma 3.2. Φ
(α)
m,n in (3.16) with even m+ n satisfy the recurrence relation

Φ(α)
n,n(s) = 2− 2e−

(αs)2

4 L0n
(
α2s2

2

)
, n = 0, 1 . . . , (3.19)

√
n+ 1Φ

(α)
m+1,n+1(s)

=
√
m+ 1Φ(α)

m,n(s) +
√
nΦ

(α)
m+1,n−1(s)−

√
m+ 2Φ

(α)
m+2,n(s). (3.20)
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Proof. It suffices to prove that Y
(α)
m,n,m ≥ n ≥ 0, satisfy the following recurrence

relation:
√
m+ 2Y

(α)
m+2,n(s) +

√
nY

(α)
m+1,n−1(s)

=
√
n+ 1Y

(α)
m+1,n+1(s) +

√
m+ 1Y (α)

m,n(s), (3.21)

Y (α)
n,n (s) = (−1)ne−

(αs)2

4 L0n
(
α2s2

2

)
. (3.22)

Indeed, one verifies readily that

l!

[(
m+ 2

l

)(
n

l

)
−
(
m+ 1

l

)(
n+ 1

l

)]

=
(n−m− 1)(m+ 1)!n!

(l − 1)!(m + 2− l)!(n + 1− l)!

= −(l − 1)!

[
(m+ 1)

(
m

l − 1

)(
n

l − 1

)
− n

(
m+ 1

l − 1

)(
n− 1

l − 1

)]
.

Multiplying both sides of the above identity by

(−1)l2le−
(αx)2

4 (αs)m+n+2−2l

√
2m+n+2(m+ 1)!n!

and summing them up with respect to l, one finds that

e−
(αs)2

4

∞∑

l=0

(−1)l2ll!
√
m+ 2√

2m+2+n(m+ 2)!n!

(
m+ 2

l

)(
n

l

)
(αs)m+2+n−2l

− e−
(αs)2

4

∞∑

l=0

(−1)l2ll!
√
n+ 1√

2m+1+n+1(m+ 1)!(n + 1)!

(
m+ 1

l

)(
n+ 1

l

)
(αs)m+1+n+1−2l

= e−
(αs)2

4

∞∑

l=0

(−1)l−12l−1(l − 1)!
√
m+ 1√

2m+nm!n!

(
m

l − 1

)(
n

l − 1

)
(αs)m+n+2−2l

− e−
(αs)2

4

∞∑

l=0

(−1)l−12l−1(l − 1)!
√
n√

2m+n(m+ 1)!(n − 1)!

(
m+ 1

l − 1

)(
n− 1

l − 1

)
(αs)m+n+2−2l.

From the definition of Y
(α)
m,n, we can rewrite the above as

√
m+ 2Y

(α)
m+2,n(s)−

√
n+ 1Y

(α)
m+1,n+1(s) =

√
m+ 1Y (α)

m,n(s)−
√
nY

(α)
m+1,n−1(s),

which gives (3.21). Noting that (3.22) is an immediate consequence of (2.24), we

complete the proof.

With the above preparations, we can calculate the entries of the stiffness matrix.

Also we note that S is symmetric. Thus, it suffices to compute the entries Sm+n,n

with nonnegative even m. Below we state our main result as a direct consequence of

Lemma 3.2.
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Theorem 3.1. Sm+n,n = 0 if m is odd. Otherwise, we have the following recurrence

algorithm for even m ≥ 0:

Sm+n,n =

√
m+ n− 1

m+ n
Sm+n−2,n +

√
n

m+ n
Sm+n−1,n−1

−
√
n+ 1

m+ n
Sm+n−1,n+1 (3.23)

for n = 0, 1, . . . , and m = 2, 4, . . . with the initial conditions

Sn,n = 2

∫ δ

0

[
1− e−

(αs)2

4 L0n
(
α2s2

2

)]
γδ(s) ds, n = 0, 1, . . . . (3.24)

Typically, we consider in this paper the kernel function

γδ(s) =
ωδ(s)

s2
, 0 < ωδ(s) ≤

Cδ

sµ
(3.25)

for µ ∈ [0, 1), s ∈ (0, δ) and some positive constant Cδ > 0. Note that the singular

factor s−2 can be absorbed in (3.24) by 1 − e−
(αs)2

4 L0n(α
2s2

2 ) owing to the fact that

L0n(0) = 1. Hence Sn,n can be computed accurately by using a Jacobi-Gauss quadrature

with respect to the weight s−µ with µ ∈ [0, 1).

3.2. Error analysis

For clarity of presentation, we shall drop the scaling parameters in the description

of error analysis, and simply denote Ĥn(x) = Ĥ
(1)
n (x).

As with the error analysis of the (local) elliptic problems, it is essential to consider

H1
δ -orthogonal projection under the inner product of the space defined in (3.1). More

precisely, we define the orthogonal projection Π̂δ
N : H1

δ(R)→ VN such that

(
u− Π̂δ

Nu, vN
)
H1

δ
= 0, ∀vN ∈ VN , (3.26)

where the H1
δ -inner product is given by

(u, v)H1
δ
=

∫ ∞

−∞

∫ δ

0

(
u(x+ s)− u(x)

)(
v(x+ s)− v(x)

)
γδ(s) dsdx

+

∫ ∞

−∞
u(x)v(x) dx, ∀u, v ∈ H1

δ(R). (3.27)

By the projection theorem, we have

∥∥u− Π̂δ
Nu
∥∥
H1

δ
= inf

Ψ∈VN

‖u− Ψ‖H1
δ
. (3.28)

The following bound plays an important part in the error analysis.
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Lemma 3.3. Let γδ(s) be a general kernel function such that

γδ(s) =
ωδ(s)

s2
, 0 < ωδ(s) ≤

Cδ

sµ
, µ ∈ [0, 1), s ∈ (0, δ), δ > 0. (3.29)

Then for any u ∈ H1
δ (R), we have

|u|H1
δ
≤ Dδ,µ‖u′‖, where Dδ,µ :=

√
Cδδ1−µ

1− µ . (3.30)

Proof. In view of (3.5),

|u|2H1
δ
=

1

π

∫ ∞

−∞
Iδ(ξ)

∣∣F [u](ξ)
∣∣2 dξ,

Iδ(ξ) =

∫ δ

0

(
1− cos(ξs)

)
γδ(s) ds.

(3.31)

We next estimate the bound of Iδ(ξ) with kernel function defined in (3.1). It is easy to

show that for any y ≥ 0, we have y2

2 − 1 + cos y ≥ 0. This implies

1− cos(ξs)

s2
≤ ξ2

2
, s > 0, ξ ∈ R. (3.32)

Hence, by (3.1), we have

Iδ(ξ) ≤
ξ2

2

∫ δ

0
ωδ(s) ds ≤ Cδ

ξ2

2

∫ δ

0
s−µ ds =

Cδδ
1−µ

2(1− µ)ξ
2. (3.33)

Then by (3.31), (3.33) and Parseval’s identity again,

|u|2H1
δ
≤ Cδδ

1−µ

2π(1 − µ)

∫ ∞

−∞
ξ2
∣∣F [u](ξ)

∣∣2 dξ

=
Cδδ

1−µ

2π(1 − µ)

∫ ∞

−∞
iξF [u](ξ) · iξF [u](ξ) dξ

=
Cδδ

1−µ

1− µ

∫ ∞

−∞
[u′(x)]2 dx =

Cδδ
1−µ

1− µ ‖u
′‖2. (3.34)

This ends the proof.

With the aid of Lemma 3.3, we can then properly choose Ψ in (3.28) to derive the

error estimate of the orthogonal projection Π̂δ
N . We state the main result as follows.

Theorem 3.2. Let γδ(s) be a general kernel function as in Lemma 3.3. If ∂̂mx u ∈ L2(R)
with 1 ≤ m ≤ N + 1, and ∂̂x = ∂x + x, then we have the estimate

∥∥u− Π̂δ
Nu
∥∥
H1

δ
≤ c(Dδ,µ + 1)N

1−m
2

∥∥∂̂mx u
∥∥, (3.35)

where Dδ,µ is the same as in (3.30), and c is a positive constant independent of N, δ and u.
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Proof. We have to resort to some intermediate orthogonal projections on approxi-

mation by Hermite functions. Let πN : L2
ω(R) → PN be the L2

ω-orthogonal projection,

defined by

(u− πNu, vN )ω = 0, ∀vN ∈ PN . (3.36)

For any u ∈ L2(R), we have ue
x2

2 ∈ L2
ω(R). Define the operator

π̂Nu = e−
x2

2 πN
(
ue

x2

2
)
∈ VN . (3.37)

By (3.36), it defines an L2-orthogonal projection upon VN as

(
u− π̂Nu, vN

)
=

(
ue

x2

2 − πN
(
ue

x2

2
)
, vNe

x2

2

)

ω

= 0, ∀vN ∈ VN . (3.38)

We refer to [23, Theorem 7.14] for the estimates: If ∂̂mx u ∈ L2(R) with l ≤ m ≤ N + 1
and l = 0, 1, then we have

∥∥∂lx(u− π̂Nu)
∥∥ ≤ cN l−m

2

∥∥∂̂mx u
∥∥, (3.39)

where c is a positive constant independent of N and u. With this, we derive from (3.28)

and Lemma 3.3 immediately that

∥∥u− Π̂δ
Nu
∥∥
H1

δ
≤
∥∥u− π̂Nu

∥∥
H1

δ
≤
(
Dδ,µ + 1

)∥∥u− π̂Nu
∥∥
H1

≤ c
(
Dδ,µ + 1

)
N

1−m
2

∥∥∂̂mx u
∥∥. (3.40)

This ends the proof.

Now, we are ready to estimate the error between the solutions of (3.6) and (3.12).

Theorem 3.3. Let u and uN be respectively the solutions of (3.6) and (3.12) with the

kernel function γδ(s) given in Lemma 3.3. If ∂̂mx u ∈ L2(R), f ∈ C(R) and ∂̂mx f ∈ L2(R)
with 1 ≤ m ≤ N + 1, and ∂̂x = ∂x + x, then for λ > 0, we have the estimate

‖u− uN‖H1
δ
≤ c

((
Dδ,µ + 1

)
N

1−m
2

∥∥∂̂mx u
∥∥+N

1
6
−m

2

∥∥∂̂mx f
∥∥
)
, (3.41)

where Dδ,µ is the same as in (3.30), and c is a positive constant independent of N, δ, u
and f .

Proof. It follows from a standard procedure for error analysis under the Galerkin

formulation. Here, we sketch the proof for completeness. By (3.6) and (3.12), we have

Bδ(u− uN , ψ) =
(
f − ÎNf, ψ

)
, ∀ψ ∈ VN . (3.42)

By the definition (3.26),

Bδ

(
Π̂δ

Nu− uN , ψ
)
= Bδ

(
Π̂δ

Nu− u, ψ
)
+
(
f − ÎNf, ψ

)

= (λ− 1)
(
Π̂δ

Nu− u, ψ
)
+
(
f − ÎNf, ψ

)
, ∀ψ ∈ VN . (3.43)
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Taking ψ = Π̂δ
Nu− uN in the above, we infer from the Cauchy-Schwarz inequality that

for λ > 0,

∣∣Π̂δ
Nu− uN

∣∣2
H1

δ
+
λ

2

∥∥Π̂δ
Nu− uN

∥∥2

≤ (λ− 1)2λ−1
∥∥Π̂δ

Nu− u
∥∥2 + λ−1

∥∥f − ÎNf
∥∥2. (3.44)

Recall the interpolation approximation result (see [23, Theorem 7.18]): For f ∈ C(R)
and ∂̂mx f ∈ L2(R) with fixed m ≥ 1, we have

∥∥ÎNf − f
∥∥ ≤ cN 1

6
−m

2

∥∥∂̂mx f
∥∥, (3.45)

where c is a positive constant independent of N and f . Using the triangle inequality,

we will obtain the final result (3.41).

Remark 3.1. Among the kernel functions γδ satisfying (3.29), a specific case with a nor-

malised second moment is of great interest, i.e.,

∫ δ

0
γδ(s)s

2ds =

∫ δ

0
ωδ(s)ds = 1.

By (3.33),

Iδ(ξ) ≤
ξ2

2

∫ δ

0
ωδ(s) ds =

ξ2

2
, ξ ∈ R,

‖u‖H̺
δ
≤ ‖u‖H1 , u ∈ H1(R).

Without loss of generality, we can further assume that

I0(ξ) := lim
δ→0

Iδ(ξ) = lim
δ→0

∫ δ

0

(
1− cos(ξs)

)
γδ(s) ds =

ξ2

2
, ξ ∈ R.

Then

B0(u, v) := lim
δ→0

Bδ(u, v) =
1

2π

∫ ∞

−∞
(ξ2 + λ)F [u](ξ)F [v](ξ) dξ

=(u′, v′) + λ(u, v), u, v ∈ H1(R),

so by (3.31), we have

‖u‖H̺
0
= lim

δ→0
‖u‖H̺

δ
=

(
1

2π

∫ ∞

−∞
(ξ2 + 1)̺

∣∣F [u](ξ)
∣∣2 dξ

)1
2

= ‖u‖H̺ , ∀u ∈ H1(R).

Therefore, H1(R) = H1
0(R) := limδ→0H1

δ(R).
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For clarity, we denote by uδ the solution of the problem (1.5) for δ ≥ 0. One verifies

readily that

−u0′′(x) + λu0(x) = f(x), x ∈ R, lim
|x|→∞

u0(x) = 0.

For any w0, v0 ∈ H1
0(R) ⊆ H1

δ(R), we have

B0(u0 − w0, v0) = Bδ(uδ − w0, v0) +
[
Bδ(w0, v0)− B0(w0, v0)

]
.

By (3.9)-(3.10),

min(1, λ)‖u0 −w0‖H1
0
≤ B0(u0 −w0, u0 − w0)

‖u0 − w0‖H1
0

≤ sup
v0∈H1

0(R)

B0(u0 − w0, v0)

‖v0‖H1
0

= sup
v0∈H1

0(R)

Bδ(uδ − w0, v0)

‖v0‖H1
0

+ sup
v0∈H1

0(R)

Bδ(w0, v0)− B0(w0, v0)

‖v0‖H1
0

≤ max(1, λ) ‖uδ − w0‖H1
δ
+ sup

v0∈H1
0

Bδ(w0, v0)− B0(w0, v0)

‖v0‖H1
0

.

Using the triangle inequality, we derive

‖u0 − uδ‖H1
δ
≤ inf

w0∈H1
0

[
‖u0 − w0‖H1

δ
+ ‖w0 − uδ‖H1

δ

]

≤ max(λ+ 1, λ−1 + 1)

× inf
w0∈H1

0

[
‖uδ − w0‖H1

δ
+ sup

v0∈H1
0

Bδ(w0, v0)− B0(w0, v0)

‖v0‖H1
0

]
,

which together with the density of H1(R) in L2(R) implies that uδ ∈ H1
δ converges to

the solution u0 ∈ H1(R) of the usual second-order equation at the continuum level as

δ tends to 0.

Denote by uδ,N the numerical solution to (3.12). Then we infer from the proof of

Theorem 3.3 that

‖uδ − uδ,N‖H1
δ
≤ c

(
N

1−m
2

∥∥∂̂mx uδ
∥∥+N

1
6
−m

2

∥∥∂̂mx f
∥∥
)
. (3.46)

This, together with the convergence of uδ, indicates that uδ,N converges to u0 as N →
∞ and δ → 0 simultaneously. Thus, the result in Theorem 3.3 is compatible with the

estimate when δ = 0.

Remark 3.2. Let us consider large δ. Without loss of generality, we assume

γδ(s) ≡
Cγ

s1+γ
, s ∈ (0,∞), Cγ =

2γ−1γΓ(γ+1
2 )√

π Γ(1− γ
2 )

such that

Iδ(ξ) =

∫ δ

0

(
1− cos(ξs)

)
γδ(s) ds < I∞(ξ) = Cγ |ξ|γ

∫ ∞

0

1− cos s

s1+γ
ds =

|ξ|γ
2
, ξ ∈ R.



Hermite Spectral Methods for Nonlocal Models 1025

Then

B∞(u, v) := lim
δ→∞

Bδ(u, v) =
(
(−∆)

γ
2 u, v

)
+ λ(u, v), u, v ∈ H

γ
2 (R),

and by (3.31)

lim
δ→∞

‖u‖2H1
δ
=

1

2π

∫ ∞

−∞
(ξγ + 1)

∣∣F [u](ξ)
∣∣2 dξ = ‖u‖2

H
γ
2
,

thus H
γ
2 (R) = H1

∞(R) := limδ→∞H1
δ(R). A similar argument shows that uδ converges

to the solution of the following fractional Laplacian equation:

(−∆)
γ
2 u∞(x) + λu∞(x) = f(x), x ∈ R, lim

|x|→∞
u∞(x) = 0.

Furthermore, we can verify that (3.46) still holds. Then we can conclude that uδ,N
converges to u∞ as N →∞ and δ →∞ simultaneously.

4. Numerical results and discussions

4.1. Test of accuracy

We first consider the nonlocal diffusion model (1.5), and choose

ωδ(s) =
2− 2β

δ2−2β
s1−2β,

1

2
≤ β < 1 (4.1)

in (3.29) such that γδ(s) =
2−2β
δ2−2β s

−1−2β has a normalised second moment. We test the

scheme on three examples.

Example 4.1. u(x) = e−x2
(2 + sinx) (exponential decay with oscillation at infinity).

We set λ = 1 in (1.5). Besides, we suppose δ = 0.1 for nonlocal interaction and

β = 0.8 in the kernel function γδ(s). The scaling factor in the basis are chosen in

two different ways, as fixed values or adaptive values depending on the polynomial

degree N .

To illustrate the rate of convergence, we depict in the left part of Fig. 1 the discrete

L∞-errors obtained by 150 Hermite-Gauss points and the H1
δ -errors with the scaling

factor α = 1.4. It indicates that these errors behave like e−cN , where c is a constant in-

dependent ofN . As the exact solution is smooth and decays exponentially, the observed

convergence behaviour agrees with the theoretic result in Theorem 3.3.

To enhance the resolution of the approximation, we choose the scaling factor α
depending on N (denoted by αN ). For a given accuracy threshold ǫ, we set

αN = x
(N)
N /M, M = inf

y

{
y : |u(x)| ≤ ǫ, x ≥ y

}
, (4.2)

where x
(N)
N is the largest zero of the Hermite polynomial HN+1. We use ǫ = 2 × 10−9.

To illustrate the rate of convergence, we depict in Fig. 1 (right) the L∞-errors and
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Figure 1: L∞-errors and H1
δ -errors against N in semi-log scale. Left: fixed α; Right: adaptive αN .

the H1
δ -errors. The graph demonstrates that the approximation has a super-geometric

convergence rate for slightly large N . It turns out that the use of adaptive αN can lift

the convergence rate to super-geometric.

Letting δ approach zero, we investigate the approximation behaviour of nonlocal

model (1.5) to its local counterpart, that is,

−u′′(x) + λu(x) = f(x), x ∈ R, lim
|x|→∞

u(x) = 0. (4.3)

For u(x) = e−x2
(2 + sinx) and λ = 1, we have

f(x) = e−x2 [
2(3 − 4x2) + 4(1− x2) sinx+ 4x cos x

]
. (4.4)

In (1.5), we choose δ = 100, 10, 0.1, 0.01. In Fig. 2 (left), we plot the four different

nonlocal numerical solutions together with the local solution. It indicates that as δ be-

comes smaller, the nonlocal numerical solution approach the corresponding local one.

This demonstrates our scheme is δ-robust/compatible. Here, we also intend to have

some insights into the rate in δ when the numerical approximation of uδ approaches

that of u. For clarity, we denote the nonlocal numerical solution by uδN and the local

one by u0N , respectively. In Fig. 2 (right), we plot the difference uδN − u0N in L2-norm

against δ, and observe the convergence order O(δ2). It verifies the compatibility of the

proposed spectral method as δ approaches zero.

Example 4.2. u(x) = 1
(1+x2)h

(algebraic decay without oscillation at infinity).

We take λ = 2, δ = 0.1 and β = 0.8 in the model problem (1.5) with (4.1). We

adopt the adaptive scaling factor as in (4.2) for two cases: (i) h = 3 and ǫ = 10−7, and

(ii) h = 4 and ǫ = 10−8. We plot the H1
δ -errors and L∞-errors in Fig. 3 (left) and it has

a higher convergence rate than any algebraic order. In contrast, if one chooses a fixed

α independent of N , one can only expect an algebraic order of convergence according

to Theorem 3.3. In fact, it verifies that

lim
x→∞

|∂̂mx u(x)|
|x|m/(1 + x2)h

= 1,
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Figure 2: Left: Numerical solutions of nonlocal and local models; Right: L2-errors against δ in log-log scale.
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Figure 3: Left: L∞-errors (• for h = 3 and △ for h = 4) and H1
δ -errors (⋄ for h = 3 and ◦ for h = 4)

against N in log-log scale; Right: numerical solutions of nonlocal and local models. The dotted line with
the slope −

9
4
and the dashed line with the slope −

13
4

are used on the left side for reference.

which means ‖∂̂mx u‖ < ∞ if and only if m < 2h − 1
2 , and the H1

δ -errors will decay in

O(N3/4−h) for sufficiently large N . According [23, Remark 7.5], the Hermite approxi-

mation with adaptive scaling factors has a convergence order higher than O(N3/4−h).
For comparison, we also plot two reference lines in the same figure with the dotted line

for the slope of −9
4 , and the dashed line for the slope of −13

4 .

As with the previous example, we take

f(x) =
2

(1 + x2)h
+

2h

(1 + x2)h+1
− 4h(h + 1)x2

(1 + x2)h+2
(4.5)

in (1.5) and (4.3). When h = 3, we calculate the numerical solutions of (1.5) for

δ = 10, 1, 0.1, 0.01 and those of (4.3), as plotted in Fig. 3 (right). It is seen again that

the nonlocal solutions tend to the local one as δ approaches zero.

Example 4.3. u(x) = sinkx
(1+x2)h

(algebraic decay with oscillation at infinity).

We take λ = 3, δ = 0.1, β = 0.8 and k = 3, and consider two cases: h = 3 and h = 4
with ǫ = 10−9 and ǫ = 10−11 for the adaptive scaling factor αN , respectively. Then the
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Figure 4: Left: L∞-errors (• for h = 3 and △ for h = 4) and H1
δ -errors (⋄ for h = 3 and ◦ for h = 4)

against N in log-log scale; Right: numerical solutions of nonlocal and local models. The dotted line with
the slope −

9
4
and the dashed line with the slope −

13
4

are used on the left side for reference.

H1
δ -errors and L∞-errors are plotted in Fig. 4 (left). Similar to the previous example,

higher convergence rates than any algebraic order are observed, although Theorem 3.3

predicts only an algebraic order in O(N3/4−h). Meanwhile the accuracy is inferior to

the previous one due to the oscillatory factor sin kx.
To explore the behaviour of the nonlocal solutions with different δ, we fix

f(x) =
(k2 + 3) sin kx

(1 + x2)h
+

2hkx cos kx

(1 + x2)h+1

+
2h sin kx+ 2hkx cos kx

(1 + x2)h+1
− 4h(h + 1)x2 sin kx

(1 + x2)h+2
(4.6)

in (1.5) and (4.3). When k = 3, h = 4, we compute the numerical solution of (1.5)

for δ = 5, 1, 0.1, 0.01 and the solution of (4.3), and plot them in Fig. 4 (right). When

δ = 0.01, the nonlocal solution almost overlaps the local one as the local solution is the

limit of the nonlocal solution for δ → 0.

4.2. Application to (truncated) fractional Laplacian

For s ∈ R
d, we choose

ωδ(s) = Cd,γ |s|2−d−γ with Cd,γ =
γ2γ−1Γ((γ + d)/2)

πd/2Γ((2− γ)/2) , γ ∈ [1, 2) (4.7)

in (3.29). According to the definition (1.4), we have

Lδu(x) = −Cd,γ

∫

|x−y|≤δ

u(x)− u(y)
|x− y|d+γ

dy, x ∈ R
d. (4.8)

Note that the nonlocal operator in (4.8) truncates the integration domain of the classi-

cal fractional Laplace operator from R
d to the δ-neighborhood of x. Here we denote

(−∆δ)
γ
2 u(x) := −Lδu(x). (4.9)
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In what follows, we shall consider model problems containing one or more truncated

fractional Laplace operators in one dimension. We adopt some examples as in [28].

Example 4.4. Consider the following fractional equation:

(−∆δ)
γ
2 u(x) + 2u(x) = f(x), x ∈ R, lim

|x|→∞
u(x) = 0. (4.10)

Let δ = 0.1, γ = 1.4, and the exact solution be u(x) = e−x2/2x2 cos(x2 ). We present the

numerical errors against the polynomial degree N in Fig. 5. The scaling parameter is

taken to be α = 0.9. The results in Fig. 5 (right) shows the exponential decay of the

errors as expected.

For comparison purpose, we consider the fractional model with the usual integral

fractional Laplacian

(−∆)
γ
2u(x) + 2u(x) = f(x), x ∈ R, lim

|x|→∞
u(x) = 0, (4.11)

where (−∆)γ/2 = (−∆∞)γ/2. In the test, we take δ = 0.01, 0.1, 0.5, 5. From Fig. 5

(right), we observe that when δ becomes larger, the difference between the nonlocal

solution and the usual one becomes smaller. When δ = 5, the nonlocal solution almost

overlaps its usual counterpart. This demonstrates the compatibility of our spectral

method as δ approaches infinity.
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Figure 5: Left: L∞-errors and H1
δ -errors against N in semi-log scale; Right: numerical solutions of truncated

and usual models.

Example 4.5. Consider the multi-term equation

J∑

j=1

(−∆δ)
γj
2 u(x) = f(x), x ∈ R, lim

|x|→∞
u(x) = 0. (4.12)

Here we set J = 4, δ = 0.1, γ1 =
√
6−
√
2, γ2 =

√
2, γ3 = 3−

√
2, γ4 =

√
3 and the exact

solution u(x) = e−2x2/5(sinx+x6+x2 cos x). We choose α = 0.8. The numerical errors

in L∞-norm against the polynomial degree N are plotted in Fig. 6 (left). Exponential

convergence is observed.
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Figure 6: Left: L∞-errors and H1
δ -errors against N in semi-log scale (Example 4.5); Right: H1

δ -errors
against N in semi-log scale (Example 4.6).

Example 4.6. Consider the following nonlinear nonlocal model:

(−∆δ)
γ
2 u(x) + u2(x) = f(x), x ∈ R, lim

|x|→∞
u(x) = 0. (4.13)

To deal with the nonlinear term u2(x), we use the Newton iteration method with a to-

lerance 10−14. We set δ = 0.1 and γ = 1.3, 1.6, 1.9. The approximation results are then

depicted in Fig. 6 (right), which shows the exponential convergence as predicted.

4.3. Application to nonlocal Allen-Cahn equations

We apply the solver for spatial discretisation of the nonlocal Allen-Cahn equation

on the real line




∂tu(x, t) − ε2Lδu(x, t) + u3(x, t)− u(x, t) = 0, (x, t) ∈ R× (0, T ],

lim
|x|→+∞

u(x, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ R,

(4.14)

where the singular kernel function of the nonlocal operator Lδu(x, t) satisfies (4.1).

Let tm = m∆t,m = 0, 1, . . . ,K with the time stepping size ∆t = T
K , and let um be the

approximation of u(x, t) at time tm. Then a second-order linearized implicit scheme in

time is
um+1 − um

∆t
− ε2Lδu

m+1 + (um)2um+1 − um+1 = 0. (4.15)

The full-discretised scheme is to find um+1
N ∈ VN , such that for all vN ∈ VN ,

(
1

∆t
− 1

)(
um+1
N , vN

)
− ε2

(
Lδu

m+1
N , vN

)
+
((
umN
)2
um+1
N , vN

)
=

1

∆t

(
umN , vN

)
. (4.16)

We aim to numerically study the dynamics of the time-dependent equation and the

influence of δ on the behaviour of solutions. We fix ε = 0.1 and choose ∆t = 0.001 as
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the time step and β = 0.8 in the kernel. Besides, we put suitable scaling factor into the

basis to improve the efficiency.

Example 4.7. Consider (4.14) with the initial value: u0(x) = e−x2/2(cos x + 2 sin 2x).
As before, we make a comparison between the local and nonlocal solutions. Here we

take N = 128 in the nonlocal model and N = 64 in the local model.

We plot the numerical solutions at different T against x in Fig. 7, and observe that

solutions under nonlocal setting with small δ are close to the local ones, while for large

δ, they have visible differences. In Fig. 8, we depict the solutions (with δ = 0.1 for the

nonlocal one) in x ∈ [−5, 5] and t ∈ [0, 10] in mesh and contour plots.

Figure 7: Snapshots of numerical solutions for both local and nonlocal Allen-Cahn equations at different
time with δ = 2, 0.2.

5. Hermite spectral-Galerkin methods in two dimensions

In this section, we extend the previous Hermite spectral-Galerkin method to the

two-dimensional case. Consider the model equation

−Lδu(x) + λu(x) = f(x), x ∈ R
2, lim

|x|→∞
u(x) = 0, (5.1)

where x = (x1, x2) and the kernel γδ(s) in the nonlocal operator is given by (4.7) with

d = 2.
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contour.

Define the energy space

H1
δ(R

2) :=

{
u ∈ L2(R2) :

∫

R2

∫

|s|≤δ

∣∣u(x+ s)− u(x)
∣∣2γδ

(
|s|
)
dsdx <∞

}
. (5.2)

The weak formulation of (5.1) is to find u ∈ H1
δ (R

2) such that

Bδ(u, v) = (f, v), ∀v ∈ H1
δ (R

2), (5.3)

where

Bδ(u, v) :=
1

2

∫

R2

∫

|s|≤δ

(
u(x+ s)− u(x)

)(
v̄(x+ s)− v̄(x)

)
γδ
(
|s|
)
dsdx

+ λ

∫

R2

u(x)v̄(x)dx. (5.4)

Note that the domain of s in the integral (5.4) is a disk with radius δ > 0. It

is natural to use polar coordinates (r cos θ, r sin θ) for s. We introduce the isotropic

Hermite functions (cf. [20])

Hn
k (x) = Lnk

(
|x|2

)
Y n(x)e−

|x|2

2 , n ∈ Z, k ≥ n , (5.5)

where Lnk is the generalized Laguerre polynomial defined in (2.18), and Y n(x) is the

normalized spherical harmonic function given by

Y n(x) =
(x1 + ix2)

n

√
2π

=
rneinθ√

2π
, n ∈ Z. (5.6)

Making use of the polar coordinates x = (x1, x2) = (r cos θ, r sin θ), the orthogonality

relation of complex exponential functions, and the orthogonality relation (2.22) of the
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generalized Laguerre functions, we derive the following orthogonality relation of the

isotropic Hermite functions:
∫

R2

Hn
k (x)H

m
j (x) dx

=
1

2π

∫ ∞

0
Lnk(r2)Lmj (r2)e−r2rn+m+1dr

∫ 2π

0
ei(n−m)θdθ

=
1

2
δn,m

∫ ∞

0
Lnk(η)Lmj (η)e−ηη

n+m
2 dη

=
(k + n)!

2 k!
δk,j δn,m, n,m ∈ Z, k ≥ n , j ≥ m . (5.7)

Further, we define the orthonormal Hermite functions as

Ĥn
k (x) =

√
2k!

(k + n)!
Hn

k (x) =

√
k!

π(k + n)!
Lnk(r2)rneinθe−

r2

2 , n ∈ Z, k ≥ n . (5.8)

The Hermite spectral-Galerkin scheme for (5.3) is to find

uNK ∈ VNK := span
{
Ĥn

k : n ≤ k ≤ n +K, |n| ≤ N
}

(5.9)

such that

Bδ

(
uNK , ψ

)
= (f, ψ), ∀ψ ∈ VNK . (5.10)

For fixed δ > 0, both (5.3) and (5.10) admit a unique solution, in view of the Lax-

Milgram lemma.

5.1. Implementation

The linear system of (5.10) takes the following equivalent form:

(S + λM)u = F , (5.11)

where

M =
(
M

m,n
j,k

)
n ≤k≤n +K, |n|≤N
m ≤j≤m +K, |m|≤N

,

M
m,n
j,k =

(
Hn

k ,H
m
j

)
= δm,nδj,k,

(5.12)

S =
(
S

m,n
j,k

)
n ≤k≤n +K, |n|≤N
m ≤j≤m +K, |m|≤N

,

S
m,n
j,k = Bδ

(
Hn

k ,H
m
j

)
=

1

2

∫

|s|≤δ
Φm,n
j,k (s)γδ(|s|)ds,

(5.13)

and

Φm,n
j,k (s) = 2

∫

R2

Ĥn
k (x)Ĥ

m
j (x)dx−

∫

R2

Ĥn
k (x+ s)Ĥm

j (x)dx

−
∫

R2

Ĥn
k (x)Ĥ

m
j (x+ s)dx. (5.14)



1034 H. Li, R. Liu and L. Wang

The following result indicates the coefficient matrix of the linear system (5.11) is

real symmetric and block-diagonal.

Theorem 5.1. S is a real symmetric matrix with S
m,n
j,k = 0 for m 6= n. For k ≥ n and

j ≥ 2, S
n,n
j+k,k = S

n,n
k,k+j can be evaluated through the following recurrence relations:

Sn,n
j+k,k =

√
(k + 1)(k + 1 + n)√
(j + k)(j + k + n)

Sn,n
j+k−1,k+1 −

2(j − 1)√
(j + k)(j + k + n)

Sn,n
j+k−1,k

+

√
k(k + n)√

(j + k)(j + k + n)
Sn,n
j+k−1,k−1 −

√
(j + k − 1)(j + k − 1 + n)√

(j + k)(j + k + n)
Sn,n
j+k−2,k,

k = n , n + 1, . . . , j = 2, 3, . . . (5.15)

with the initial conditions,

S
n,n
k,k = 8π

∫ δ
2

0

[
1− L0k(η2)L0k+n(η

2)e−η2
]
ηγδ(2η)dη, k = n , n + 1, . . . ,

S
n,n
k+1,k =

8π√
(k + 1 + n)(k + 1)

×
∫ δ

2

0
L1k(η2)L1k+n(η

2)e−η2η3γδ(2η) dη, k = n , n + 1, . . . .

(5.16)

5.2. Proof of Theorem 5.1

We need the following two lemmas to prove Theorem 5.1.

Lemma 5.1. The isotropic Hermite functions are the eigenfunctions of the Fourier trans-

form. More precisely,

F
[
Ĥn

k

]
(ξ) = 2π(−i)n+2kĤn

k (ξ). (5.17)

Proof. Using polar coordinates x = (x1, x2) = (r cos θ, r sin θ) and ξ = (ξ1, ξ2) =
(ρ cosφ, ρ sin φ), we derive that

F
[
Hn

k

]
(ξ) =

∫

R2

Hn
k (x)e

−iξ·x dx

=
1√
2π

∫ ∞

0
Lnk(r2)e−

r2

2 rn+1dr

∫ 2π

0
e−iρr cos(θ−φ)einθ dθ.

Next, making change of coordinates θ ← θ+φ− π
2 , we further get from [33, Eq. (2.2.5)]

that
∫ 2π

0
e−iρr cos(θ−φ)einθdθ

= ein(φ−
π
2
)

∫ 2π

0
e−iρr sin θeinθdθ = 2π(−i)nJn(ρr)einφ, (5.18)
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where Jn is the Bessel function of order n. As a result,

F
[
Hn

k

]
(ξ) =

√
2π (−i)neinφ

∫ ∞

0
Lnk(r2)e−

r2

2 rn+1Jn(ρr)dr

=
√
2π (−i)nρ− 1

2 einφ
∫ ∞

0
Lnk(r2)e−

r2

2 rn+
1
2Jn(ρr)(ρr)

1
2dr

=
√
2π (−i)nρ− 1

2 einφ(−1)kLnk(ρ2)e−
ρ2

2 ρn+
1
2

= 2π(−i)n+2kHn
k (ξ),

where we have used an identity on the Hankel transform of the Bessel function in [14,

p. 42] for the second equality sign. By (5.8), we now verify the conclusion.

Next we present the convolution formula of isotropic Hermite functions.

Lemma 5.2. We have the convolution property

[
Ĥn

k ∗ Ĥm
j

]
(x) =

∫

R2

Ĥn
k (s− x)Ĥm

j (x)dx = πĤm−k+j
k

(x
2

)
Ĥn−j+k

j

(x
2

)
. (5.19)

Proof. By (5.17) we have

F
[
Hn

k ∗Hm
j

]
(ξ) = F

[
Hn

k

]
(ξ) ·F

[
Hm

j

]
(ξ)

= (2π)2 (−i)n+m+2k+2jHn
k (ξ)H

m
j (ξ)

= (2π)2 (−i)n+m+2k+2jLnk
(
|ξ|2
)
Lmj
(
|ξ|2
)
Y n(ξ)Y m(ξ)e−|ξ|2 .

Using polar coordinates x = (r cos θ, r sin θ) and ξ = (ρ cosφ, ρ sin φ), we further get

[
Hn

k ∗Hm
j

]
(x) =

1

4π2

∫

R2

F
[
Hn

k ∗Hm
j

]
(ξ)eiξ·x dξ

=
(−i)n+m+2k+2j

2π

∫ ∞

0
Lnk(ρ2)Lmj (ρ2)e−ρ2ρm+n+1dρ

×
∫ 2π

0
ei(n+m)φeiρr cos(φ−θ) dφ.

Making change of variable φ← φ+ π yields

∫ 2π

0
ei(n+m)φeiρr cos(φ−θ) dφ

= (−1)n+m

∫ 2π

0
ei(n+m)φe−iρr cos(φ−θ) dφ

(5.18)
= 2πim+nJm+n(ρr)e

i(m+n)θ .

Resorting the following integral identity for y > 0,ℜα > 0,ℜν > −1 [17, Eq. (5)],
∫ ∞

0
ρν+1e−αρ2Lν−σ

j (αρ2)Lσk(αρ2)Jν(ρr)dρ
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=
(−1)j+k

2α

( r

2α

)ν
e−

r2

4αLσ−j+k
j

(
r2

4α

)
Lν−σ+j−k
k

(
r2

4α

)
,

we finally derive that

[
Hn

k ∗Hm
j

]
(x) = (−1)k+j ei(m+n)θ

∫ ∞

0
Lnk(ρ2)Lmj (ρ2)e−ρ2ρm+n+1Jm+n(ρr) dρ

=
1

2
ei(m+n)θ

(r
2

)m+n
e−

r2

4 Lm−k+j
k

(
r2

4

)
Ln−j+k
j

(
r2

4

)

= πHm−k+j
k

(x
2

)
Hn−j+k

j

(x
2

)
,

which together with (5.8) gives (5.19). This completes the proof.

We now return to the proof of Theorem 5.1. Noting that

Ĥn
k (x) =

√
k!

π(k + n)!
Lnk
(
|x|2

)
(x1 − ix2)

ne−
|x|2

2

(2.23)
=

√
(k + n)!

πk!
L−n
k+n

(
|x|2

)(
− |x|2

)−n
(x1 − ix2)

ne−
|x|2

2

= (−1)n
√

(k + n)!

πk!
L−n
k+n

(
|x|2

)
(x1 + ix2)

−ne−
|x|2

2

= (−1)nĤ−n
k+n(x) = Ĥ−n

k+n(−x),

we get from (5.19) that

Φm,n
j,k (s) = 2

(
Ĥn

k , Ĥ
m
j

)
−
[
Ĥn

k ∗ Ĥ−m
j+m

]
(s)−

[
Ĥn

k ∗ Ĥ−m
j+m

]
(−s)

= 2δm,nδj,k − πĤj−k
k

(s
2

)
Ĥn+k−j−m

j+m

(s
2

)
− πĤj−k

k

(−s
2

)
Ĥn+k−j−m

j+m

(−s
2

)

=
(
1 + (−1)m+n

) [
δm,nδj,k − πĤj−k

k

(s
2

)
Ĥn+k−j−m

j+m

(s
2

)]

=
(
1 + (−1)m+n

)
[
δm,nδj,k −

√
k!(j +m)!

j!(k + n)!
Lj−k
k (η2)Ln−m+k−j

j+m (η2)e−η2(ηei̟)n−m

]
,

where we have used the polar coordinates s = (2η cos̟, 2η sin̟) for the last equality

sign. In the sequel, we derive that

S
m,n
j,k =

1 + (−1)m+n

2

∫

|s|≤δ

[
δm,nδj,k − πĤj−k

k

(s
2

)
Ĥn+k−j−m

j+m

(s
2

)]
γδ
(
|s|
)
ds

= 2
(
1 + (−1)m+n

) ∫ 2π

0
ei(n−m)̟ d̟

×
∫ δ

2

0

[
δm,nδj,k −

√
k!(j +m)!

j!(k + n)!
Lj−k
k (η2)Ln−m+k−j

j+m (η2)e−η2ηn−m

]
ηγδ(2η) dη
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= 8πδm,n

∫ δ
2

0

[
δj,k −

√
k!(j + n)!

j!(k + n)!
Lj−k
k (η2)Lk−j

j+n(η
2)e−η2

]
ηγδ(2η)dη. (5.20)

It is now easy to see that the Hermitian matrix S is real symmetric and S
m,n
j,k = 0

if m 6= n. Next, to obtain a recurrence relation for S
n,n
j,k , we resort to the identities

(2.19)-(2.21), then find that

(k + 1)Lj−k−1
k+1 (ζ)Lk−j+1

j+n (ζ)− jLj−k−1
k (ζ)Lk−j+1

j+n−1(ζ)

− (j + 1 + n)Lj−k+1
k (ζ)Lk−j−1

j+n+1(ζ) + (k + n)Lj−k+1
k−1 (ζ)Lk−j−1

j+n (ζ)

(2.20)
=

[
jLj−k−1

k (ζ)− ζLj−k
k (ζ)

]
Lk−j+1
j+n (ζ)− jLj−k−1

k (ζ)Lk−j+1
j+n−1(ζ)

− Lj−k+1
k (ζ)

[
(k + n)Lk−j−1

j+n (ζ)− ζLk−j
j+n(ζ)

]
+ (k + n)Lj−k+1

k−1 (ζ)Lk−j−1
j+n (ζ)

= jLj−k−1
k (ζ)

[
Lk−j+1
j+n (ζ)− Lk−j+1

j+n−1(ζ)
]
− ζLj−k

k Lk−j+1
j+n (ζ)

− (k + n)
[
Lj−k+1
k (ζ)− Lj−k+1

k−1 (ζ)
]
Lk−j−1
j+n (ζ) + ζLj−k+1

k (ζ)Lk−j
j+n(ζ)

(2.19)
=

[
jLj−k−1

k (ζ) + ζLj−k+1
k (ζ)

]
Lk−j
j+n(ζ)− L

j−k
k (ζ)

[
(k + n)Lk−j−1

j+n (ζ) + ζLk−j+1
j+n (ζ)

]

(2.19)
=

(2.20)

[
−jLj−k

k−1(ζ) + (2j + 1)Lj−k
k (ζ)− (k + 1)Lj−k

k+1(ζ)
]
Lk−j
j+n(ζ)

− Lj−k
k (ζ)

[
−(k + n)Lk−j

j+n−1(ζ) + (2k + 2n+ 1)Lk−j
j+n(ζ)− (j + n+ 1)Lk−j

j+n+1(ζ)
]

(2.21)
= (ζ + j − k)Lj−k

k (ζ)Lk−j
j+n(ζ)− (ζ + k − j)Lj−k

k (ζ)Lk−j
j+n(ζ)

= 2(j − k)Lj−k
k (ζ)Lk−j

j+n(ζ). (5.21)

Let us temporarily define

Φn
j,k(ζ) := δj,k −

√
k!(j + n)!

j!(k + n)!
Lj−k
k (ζ)Lk−j

j+n(ζ)e
−ζ .

We further derive from (5.21) that
√

(k + 1)(k + 1 + n)Φn
j,k+1(ζ) +

√
k(k + n)Φn

j,k−1(ζ)

−
√

(j + 1)(j + 1 + n)Φn
j+1,k(ζ)

−
√
j(j + n)Φn

j−1,k(ζ) + 2(k − j)Φn
j,k(ζ) = 0,

which yields (5.15).

As for the initial values, we declare from (5.20) that

S
n,n
k,k = 8π

∫ δ
2

0

[
1− L0k(η2)L0k+n(η

2)e−η2
]
ηγδ(2η) dη, k ≥ n ,

S
n,n
k+1,k = −8π

√
k + 1 + n

k + 1

∫ δ
2

0
L1k(η2)L−1

k+1+n(η
2)e−η2ηγδ(2η)dη
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(2.23)
=

8π√
(k + 1 + n)(k + 1)

∫ δ
2

0
L1k(η2)L1k+n(η

2)e−η2η3γδ(2η)dη, k ≥ n ,

which gives (5.16). Now the proof is complete.

5.3. Numerical results

We take δ = 0.1 and γ = 1.4, and test for two exact solutions

u(x) = e−
(x21+x22)

2

(
1− x21

10

)4(
1 +

x21
10

)6

,

u(x) = e−
(x21+x22)

2 sin(x1x2).

In Fig. 9, we plot the errors between the numerical results and the exact solutions in

maximum norm against the polynomial degreeN . We observe the spectral convergence

in both cases as in one dimension shown in the previous section.
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Figure 9: L∞-errors against N in semi-log scale. Left: u(x) = e−(x2

1
+x2

2
)/2(1−x2

1/10)
4(1+x2

1/10)
6; Right:

u(x) = e−(x2

1
+x2

2
)/2 sin(x1x2).

We remark that a common way to discretise (5.3) is based on the tensor product

basis of Hermite functions (cf. [21, 28]). However, the computational cost of the stiff-

ness matrix is O(N6) and the coefficient matrix is full that the complexity of solving

the linear system using Gauss elimination method is also O(N6). In comparison, our

method of isotropic Hermite functions has remarkable advantages in view of the recur-

sive formula given in Theorem 5.1.
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