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Abstract. The discontinuous Galerkin (DG) or local discontinuous Galerkin (LDG)

method is a spatial discretization procedure for convection-diffusion equations, which

employs useful features from high resolution finite volume schemes, such as the exact

or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax-

Wendroff time discretization procedure is an alternative method for time discretization

to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In

this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretiza-

tion procedure (LWDG) based on different numerical fluxes for finite volume or finite

difference schemes, including the first-order monotone fluxes such as the Lax-Friedrichs

flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We

systematically investigate the performance of the LWDG methods based on these differ-

ent numerical fluxes for convection terms with the objective of obtaining better perfor-

mance by choosing suitable numerical fluxes. The detailed numerical study is mainly

performed for the one-dimensional system case, addressing the issues of CPU cost, ac-

curacy, non-oscillatory property, and resolution of discontinuities. Numerical tests are

also performed for two dimensional systems.
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1. Introduction

In this paper, we develop fluxes for the method of DG with Lax-Wendroff time dis-

cretization procedure (LWDG) based on different numerical fluxes for finite volume or fi-

nite difference schemes, including the first-order monotone fluxes such as the Lax-Friedrichs

flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes, and in-

vestigate the performance of the LWDG method based on different numerical fluxes for

convection terms for solving nonlinear convection-diffusion scalar equations or systems:
¨

ut +∇ · f (u) =∇ · f d(u,∇ · u),
u(x , 0) = u0(x),

(1.1)
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where f and f d are convection and diffusion terms, respectively, with the objective of

obtaining better performance by choosing suitable numerical fluxes.

The discontinuous Galerkin (DG) method [3–7] for solving hyperbolic conservation

laws and its extension to time-dependent convection-diffusion equations, the local DG

(LDG) methods [1, 8, 9] are high order finite element methods employing the useful fea-

tures from high resolution finite volume schemes, such as the exact or approximate Rie-

mann solvers, and total variation bounded (TVB) limiters [26].

DG or LDG method is a spatial discretization procedure, namely, it is a procedure to ap-

proximate the spatial derivative terms in (1.1). The time derivative term can be discretized

by explicit, nonlinearly stable high order Runge-Kutta time discretizations [25,27], and the

scheme is termed as RKDG or RKLDG scheme, respectively. An alternative approach could

be using a Lax-Wendroff type time discretization procedure, which is also called the Taylor

type referring to a Taylor expansion in time or the Cauchy-Kowalewski type referring to the

similar Cauchy-Kowalewski procedure in partial differential equations (PDEs) [28]. This

approach is based on the idea of the classical Lax-Wendroff scheme [17], and it relies on

converting all the time derivatives in a temporal Taylor expansion into spatial derivatives

by repeatedly using the PDE and its differentiated versions. The spatial derivatives are then

discretized by, e.g. the DG approximations. The methods are termed as LWDG methods

for conservation laws [20]. Lax-Wendroff type time discretization procedure is also used

by Dumbser and Munz [10, 11], in which they developed the ADER (Arbitrary high order

schemes using DERivatives, see [29]) discontinuous Galerkin method using generalized

Riemann solvers [29]. ADER methods also use the Lax-Wendroff procedure to convert

time derivatives to spatial derivatives. The Lax-Wendroff type time discretization was also

used in high order finite volume schemes [14,29] and finite difference schemes [22].

As pointed out in [20], the LWDG is a one step, explicit, high order finite element

method, the limiter is performed once every time step. As a result, LWDG is more compact

than RKDG and the Lax-Wendroff time discretization procedure is more cost effective than

the Runge-Kutta time discretizations for certain problems including two dimensional Euler

systems of compressible gas dynamics when nonlinear limiters are applied.

An important component of the DG methods for solving conservation laws (1.1) is the

numerical flux, based on exact or approximate Riemann solvers, which is borrowed from

finite difference and finite volume methodologies. In most of the DG papers in the liter-

ature, the two-point, first order monotone Lax-Friedrichs (LF) numerical flux is used due

to its simplicity. However, there exist many other numerical fluxes based on various ap-

proximate Riemann solvers in the literature, such as other two-point, first order monotone

fluxes and essentially two-point TVD flux, which could also be used in the context of DG

methods. The local LF (LLF) numerical flux, the Godunov flux [13], the Engquist-Osher

(EO) flux [12,18] for the scalar case and its extension to systems (often referred to as the

Osher-Solomon flux [18]), the HLL flux [15] and a modification of the HLL flux, often re-

ferred to as the HLLC flux [31] are based on the approximate Riemann solver, these fluxes

are two-point, first order monotone fluxes. One of the essentially two-point TVD fluxes is

the flux limiter centered (FLIC) flux [30] with the following essentially two-point property:

f̂ (ul ,u,u,ur ) = f (u) for any ul and ur , which combines a low order monotone flux and a


