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Abstract. Stochastic approximation problem is to find some root or extremum of a non-

linear function for which only noisy measurements of the function are available. The

classical algorithm for stochastic approximation problem is the Robbins-Monro (RM)

algorithm, which uses the noisy evaluation of the negative gradient direction as the

iterative direction. In order to accelerate the RM algorithm, this paper gives a frame

algorithm using adaptive iterative directions. At each iteration, the new algorithm goes

towards either the noisy evaluation of the negative gradient direction or some other

directions under some switch criterions. Two feasible choices of the criterions are pro-

posed and two corresponding frame algorithms are formed. Different choices of the

directions under the same given switch criterion in the frame can also form different

algorithms. We also proposed the simultanous perturbation difference forms for the

two frame algorithms. The almost surely convergence of the new algorithms are all

established. The numerical experiments show that the new algorithms are promising.
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1. Introduction

Stochastic approximation algorithm provides a simple and effective approach for find-

ing root or minimum of function whose evaluations are contaminated with noise. Consider

a n-dimensional loss function f : Rn → R , with gradient g : Rn → Rn. We have that

g(x) = 0 if and only if x = x∗ when f has a unique local minimizer x∗ ∈ Rn. If the direct

noisy estimate of the gradient function g̃k is available, the Robbins-Monro(RM) algorithm

[1](extended by Blum [2] to multidimensional systems) estimates a root of g with the

following recursion:

xk+1 = xk −αk g̃k, (1.1)
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g̃k = g(xk) + ǫk, (1.2)

where ǫk is the noise and αk is a sequence that satisfies

αk > 0,
∑

k≥1

αk =∞,
∑

k≥1

α2
k <∞. (1.3)

Since the direct noisy measurements g̃k are sometimes not available, Kiefer and Wolfowitz

[3] introduced the finite difference form of the RM algorithm, which employs an estimator

for the gradient denoted by ĝ(xk), whose ith component is given by

ĝi(xk) =
f̃ (xk + ckei)− f̃ (xk− ckei)

2ck

, (1.4)

where ei is the unit vector along the ith axis and f̃ is a noisy measurement of the function

value f . We can call this algorithm finite difference stochastic approximation (FDSA)

algorithm or KW algorithm simply. The almost surely convergence of the KW algorithm

is also given by Kiefer and Wolfowitz [3]. The major disadvantage of the KW algorithm

is that it requires 2n measurements of the function value per iteration. By contrast, the

random direction stochastic approximation (RDSA) algorithm first given by Kushner and

Clark [4], needs only two measurements per iteration. It has the following recursion:

xk+1 = xk −αk

�

f̃ (xk + ckξk)− f̃ (xk− ckξk)

2ck

�

ξk. (1.5)

A special case of the RDSA algorithm is the simultaneous perturbation stochastic approxi-

mation (SPSA) algorithm introduced by Spall [5] which employs the estimator:

ĝ(xk) =

�

f̃ (xk + ckξk)− f̃ (xk− ckξk)

2ck

�

ζk, (1.6)

where ξk is chosen from a distribution that has to satisfy some particular constraints, and

the ith component of ζk are given by

ζ
(i)

k
= 1/ξ

(i)

k
. (1.7)

Since in fact the Bernoulli distribution is the only choice that has ever been advocated

for SPSA, SPSA is a special case of RDSA, though it does bear remarking that the use

of a Bernoulli distribution with RDSA had not been suggested until after SPSA had been

introduced. The FDSA, RDSA and SPSA algorithm exhibit similar convergence properties.

The RM algorithm is a classical stochastic approximation algorithm and exhibits the

property that it converges to a stationary point almost surely. The major disadvantage of

RM algorithm and its difference forms including the FDSA, RDSA and SPSA algorithms are

their slow speed of convergence. There have been many efforts to accelerate the RM algo-

rithm. Most of them consist in the choice of the step size αk, such as the Kesten algorithm


