
Numer. Math. Theor. Meth. Appl. Vol. 2, No. 4, pp. 377-402

doi: 10.4208/nmtma.2009.m9002s November 2009

A Coordinate Gradient Descent Method for

Nonsmooth Nonseparable Minimization

Zheng-Jian Bai1, Michael K. Ng2,∗ and Liqun Qi3

1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China.
2 Centre for Mathematical Imaging and Vision and Department of Mathematics,

Hong Kong Baptist University, Kowloon Tong, Hong Kong.
3 Department of Applied Mathematics, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong.

Received 18 February 2009; Accepted (in revised version) 9 June 2009

Abstract. This paper presents a coordinate gradient descent approach for minimizing

the sum of a smooth function and a nonseparable convex function. We find a search

direction by solving a subproblem obtained by a second-order approximation of the

smooth function and adding a separable convex function. Under a local Lipschitzian

error bound assumption, we show that the algorithm possesses global and local linear

convergence properties. We also give some numerical tests (including image recovery

examples) to illustrate the efficiency of the proposed method.
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1. Introduction

We consider a nonsmooth optimization problem of minimizing the sum of a smooth

function and a convex nonseparable function as follows.

min
x

Fc(x)
def
= f (x)+ cP(x), (1.1)

where c > 0, P : Rn → (−∞,∞] is proper, convex, lower semicontinuous (lsc) function,

and f is smooth (i.e., continuously differentiable) on an open subset of Rn containing

domP = {x |P(x) <∞}. In this paper, we assume that P is a nonseparable function in the

form P(x) := ‖Lx‖1, where L 6= I is preferred to be a sparse matrix. In particular, we focus

on a special case of (1.1) defined by

min
x

Fc(x)
def
= f (x)+ c‖Lx‖1, (1.2)
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where L is the first order or second order differentiation matrix. Problem (1.1) with

P(x) = ‖x‖1 and Problem (1.2) arise in many applications, including compressed sens-

ing [9,13,24], signal/image restoration [5,19,23], data mining/classification [3,14,21],

and parameter estimation [8,20].

There has been considerable discussion on the problem (1.1), see for instance [2, 6,

7, 11, 15]. If P is also smooth, then a coordinate gradient descent based on Armijo-type

rule was well developed for the unconditional minimization problem (1.1) in Karmanov

[10, pp. 190–196 and pp. 246–250], where the global convergence and geometrical

convergence are provided if Fc(x) is assumed to be strongly convex. Recently, Tseng and

Yun [22] gave a coordinate gradient descent method with stepsize chosen by an Armijo-

type rule for the problem (1.1) under the assumption that P is (block) separable, where

the coordinates are updated in either the Gauss-Seidel rule or the Gauss-Southwell-r rule

or the Gauss-Southwell-q rule. Moreover, the global convergence and linear convergence

for this method were established. However, the method cannot be employed to solve (1.2)

directly since P(x) = ‖Lx‖1 is no longer a (block) separable function.

Recently, various methods have been considered for image restoration / deblurring/

denoising problems with ℓ1-regularization, see for instance [5,17,19,23,25]. In particular,

Fu et al. [5] gave a primal-dual interior point method for solving the following optimization

problem with ℓ1 regularization:

min
x
‖Ax − b‖22 + c‖Lx‖1, (1.3)

where A is a linear blurring operator, x is the original true image, and b is the observed

blurred image. In each interior point iteration, the linear system is solved by a precondi-

tioned conjugate gradient method. However, the number of conjugate gradient iterations

are still large since the linear system is ill-conditioned and the performance of the precon-

ditioner depends on the support of the blurring function and on how fast such function

decays in spatial domain. Osher et al. [17,25] presented the Bregman iterative algorithm

for solving (1.3) with L being the identity matrix or the first order differentiation matrix.

In each Bregman iteration, we need to solve an unconstrained convex subproblem.

In this paper, we aim to provide a coordinate gradient descent method with stepsize

chosen by an Armijo-type rule to solve the problem (1.2) and (1.3) efficiently, especially

when the problem dimension is large. Our idea is to find a coordinate-wise search direction

by finding a minimum in a subproblem, which is obtained by a strictly convex quadratic

approximate of f and adding a separable function term (derived from P(x) = ‖Lx‖1).

Then, we update the current iterate in the direction of the coordinate-wise minimizer. We

will show that the coordinate-wise minimizer can be sufficient close to the coordinate-wise

minimizer of the subproblem of the sum of the same strictly convex quadratic approxi-

mate of f and P(x) = ‖Lx‖1 if the parameter c is small enough. This approach can be

implemented simply and is capable to solve large-scale problems. We show that our algo-

rithm converges globally if the coordinates are chosen by either the Gauss-Seidel rule or

the Gauss-Southwell-r rule or the Gauss-Southwell-q rule. Moreover, we prove that our

approach with Gauss-Southwell-q rule converges at least linearly based on a local Lips-


