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Abstract. In this paper, we propose a discrepancy rule-based method to automatically

choose the regularization parameters for total variation image restoration problems.

The regularization parameters are adjusted dynamically in each iteration. Numerical

results are shown to illustrate the performance of the proposed method.
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1. Introduction

Digital image deconvolution plays an important part in various areas of applied sci-

ences such as medical and astronomical imaging, and film restoration. The observed image

is often degraded by blurring operations and additive noise. The blurring of images is often

caused by a relative motion between the camera and the original scene, the defocusing of

the lens system, or atmospheric turbulence.

In digital image processing, images are represented by vectors and matrices. In this for-

mat, one-dimensional vectors express two-dimensional images. These vectors are formed

by stacking the image column by column. Without loss of generality, we assume that the

size of the image is n× n, but all discussions can be applied to images of size n×m. Hence

the original and observed images ft rue and g are expressed by the n2×1 vectors f t rue and

g respectively, and their relationship can be expressed as follows

g = H f t rue + n.

Here H is a blurring matrix and n is a vector of zero-mean Gaussian white noise with

variance σ2. The main aim of image deconvolution is to recover the image f from the

observed image g such that f ≈ f t rue.
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The challenge in image restoration is that it is an ill-posed problem. The simple ap-

proach of performing the inverse transformation to the observed image is not feasible since

either there doesn’t exist an inverse transformation or the inverse transformation is very ill-

conditioned; a small perturbation in the observed image can produce a large perturbation

in the restored image.

Regularization theory is often used to handle such ill-conditioned problems. One usual

approach is to determine the restored image by minimizing the following energy functional

min
f



H f − g


2

2
+ βR( f ), (1.1)

where β is called the regularization parameter andR is the regularization term. Numerous

expressions for R have been used in literature, such as Tikhonov regularization [12, 24],

Total variation (TV) regularization [22], Wavelet regularization [4,9,11], etc. The energy

functional is a weighted sum of the two terms. The first term is the data fitting term and the

second term is the regularization term which contains some prior information about the

original image to alleviate the problem of ill-conditioning. By adjusting the regularization

parameter, a compromise is achieved to suppress the noise and preserve the nature of the

original image. Usually, the regularization parameter β is determined by trial-and-error

method, the generalized cross validation method [12,13], discrepancy principle [17] or the

L-curve method [14]. Also, the regularization parameter can be regarded as the Lagrange

multiplier of the constrained minimization problem [3]

min
f
R( f )

subject to 

H f − g


2

2
= E[‖n‖22] = σ

2n2, (1.2)

where E[·] denotes the expectation operator. The variance σ2 of the noise can be estimated

using the median rule [16].

Applying deblurring and denoising independently is a relatively prevalent concept. Its

success is due to the facts that the methods are easy to implement, and solving large linear

systems is avoided. In [18, 21, 26], the authors proposed a two-step approach to recover

the image when a pilot image upilot is available. This approach can be formulated as the

following consecutive minimization problem:

Sα(upilot) = argmin f



H f − g


2

2
+α




R
�

f − upilot

�



2

2
,

Tβ(Sα(upilot)) = argminu

1

2



Sα(upilot)− u


2

2
+ βR(u).

where R is the regularization matrix, α and β are a regularization parameters. Usually, R

is the identity matrix, in which a minimum residual on f subject to a noise constraint is

sought, or R is the finite difference matrix, in which the smoothness of the restored image

is enhanced. The pilot image can be set to upilot = 0 or the restored image obtained by

other methods.


