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Abstract. Two iterative algorithms are proposed for the split fixed point problem. The
first algorithm is shown to be weakly convergent and the second one to be strongly con-
vergent. One feature of these algorithms is that the stepsizes are chosen in such a way
that no priori knowledge of the operator norms is required. A new idea is introduced in
order to prove strong convergence of the second algorithm.
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1. Introduction

We are concerned with algorithmic approaches to the split fixed point problem (SFPP)
which is an inverse problem of finding an element in the set of fixed points of one mapping
such that its image under a bounded linear operator lies in the set of fixed points of another
mapping. More specifically, the SFPP is to

find x ∈ Fix(U), such that Ax ∈ Fix(T ), (1.1)

where H1 and H2 are two Hilbert spaces, A : H1 → H2 is a bounded linear operator,
U : H1 → H1 and T : H2 → H2 are nonlinear mappings. Here Fix(U) and Fix(T ) stand
for the fixed point sets of U and T , respectively. In particular, if U and T are orthogonal
projections, the SFPP (1.1) is reduced to the split feasibility problem (SFP) [6], which
consists of finding a point x with the property:

x ∈ C and Ax ∈ Q, (1.2)
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where C ⊆ H1 and Q ⊆ H2 are two nonempty closed convex subsets. These problems have
been extensively studied in recent years due to their important role in many applied disci-
plines including signal processing and image reconstruction with particular developments
in the medical treatment of intensity-modulated radiation therapy [3,4,8,14,25].

A successful method for solving the SFP (1.2) is Byrne’s CQ algorithm [3, 4] that gen-
erates a sequence {xn} via the iteration process:

xn+1 = PC

�

xn−τnA∗(I − PQ)Axn

�

, (1.3)

where A∗ is the adjoint operator of A, I is the identity operator, τn is a real parameter, and
PC and PQ are the orthogonal projections onto C and Q, respectively. If τn is chosen in a
compact subset of the interval

�

0, 2
‖A‖2
�

, then the CQ algorithm (1.5) converges weakly to

a solution of the SFP (1.2) whenever such a solution exists. However, to implement the
CQ algorithm, one must compute (or, at least, estimate) the operator norm of A, which
is not an easy work in practice, in general. An alternative way of avoiding doing this
is to construct variable stepsizes that have no connections with operator norms. Several
novel ways of selecting stepsizes have been conducted to overcome this difficulty (see
e.g. [14,26]). Among these stepsizes, Yang [26] suggested the following one

τn :=
ρn

‖A∗(I − PQ)Axn‖
, (1.4)

where {ρn} is a sequence of positive real numbers such that

∞
∑

k=0

ρk =∞ and
∞
∑

k=0

ρ2
k <∞. (C1)

The CQ algorithm with stepsize (1.4) was first considered in finite dimensional spaces. It
is shown in [26] that the CQ algorithm with stepsize (1.4) converges to a solution of the
SFP provided that (i) Q is a bounded subset; and (ii) A is a matrix with full column rank.
With this choice of the stepsizes, the computation of ‖A‖ is clearly avoided and hence one
need not know a prior any information of ‖A‖. In a recent work, Wang [20] extended this
result to Hilbert spaces and completely removed the boundedness condition on Q and the
full-column rankness assumption on A.

For solving the SFPP (1.1), Censor and Segal [7] proposed the following method:

xn+1 = U
�

xn−τnA∗(I − T )Axn

�

. (1.5)

This is clearly an extension of the CQ algorithm. The method (1.5) was first considered
for the case of quasi firmly nonexpansive operators in finite dimensional spaces. If the
parameter τn is chosen in a compact subset of the interval

�

0, 2
‖A‖2
�

, then the method (1.5)

converges weakly to a solution of the SFPP (1.1) whenever such a solution exists. This
result was then extended to the case of quasi-nonexpansive operators [15], the case of
demicontractive operators [10,16], and the case of finite many quasi firmly nonexpansive
operators [5, 21]. In the recent work of [2, 12], a modification of (1.5) was presented so


