
Numer. Math. Theor. Meth. Appl. Vol. 4, No. 2, pp. 197-215

doi: 10.4208/nmtma.2011.42s.5 May 2011

Efficient Chebyshev Spectral Method for Solving

Linear Elliptic PDEs Using Quasi-Inverse Technique

Fei Liu∗, Xingde Ye and Xinghua Wang

Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang 310027,

China.

Received 22 January 2010; Accepted (in revised version) 16 November 2010

Available online 6 April 2011

Abstract. We present a systematic and efficient Chebyshev spectral method using quasi-

inverse technique to directly solve the second order equation with the homogeneous

Robin boundary conditions and the fourth order equation with the first and second

boundary conditions. The key to the efficiency of the method is to multiply quasi-

inverse matrix on both sides of discrete systems, which leads to band structure systems.

We can obtain high order accuracy with less computational cost. For multi-dimensional

and more complicated linear elliptic PDEs, the advantage of this methodology is obvi-

ous. Numerical results indicate that the spectral accuracy is achieved and the proposed

method is very efficient for 2-D high order problems.
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1. Introduction

Due to high order accuracy, spectral methods have gained increasing popularity for

several decades, especially in the field of computational fluid dynamics (see, e.g., [1, 2]

and the references therein). According to different test functions in a variational formula-

tion, there are three most common spectral schemes, namely, the collocation, Galerkin and

tau methods. Since the collocation methods approximate differential equations in physical

space, it is very easy to implement and adaptable to various of problems, including vari-

able coefficient and nonlinear differential equations. Weideman and Reddy constructed a

MATLAB software suit to solve differential equations by the spectral collocation methods

in [13]. Trefethen’s book [12] explained the essentials of spectral collocation methods

with the aid of 40 short MATLAB programs. For multi-dimensional problems, the spectral

collocation methods discretize the differential operators employing Kronecker products. In
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the Galerkin method, we work in the spectral space, it may lead to well conditioned linear

systems with sparse matrices for problems with constant coefficients by choosing proper

basis functions (see, e.g., [3,5,9,10]).

Although the collocation and Galerkin methods usually lead to optimal error estimates,

the primary drawback of collocation method is that the differentiation matrices are dense

in all dimensions, and it is generally not feasible to solve multi-dimensional problems by

employing the Galerkin method. Shen used a matrix diagonalization method to solve

the 2-D and 3-D Helmholtz problems in [9] and [10], but an eigenvalue-eigenvector de-

composition of the discretized linear operator is required. Therefore it can only be used for

relatively simple differential equations. Heinrichs [6] utilized a Galerkin basis set to obtain

efficient differentiation matrices, and exploited the inherent structure of both the Galerkin

differentiation matrices and the relationship between the Chebyshev and Galerkin spectral

coefficients to maximize the sparsity of differential operators. Julien and Watson [7] pre-

sented the quasi-inverse technique to efficiently solve linear elliptic differential equations

with constant coefficients under Dirichlet boundary conditions. In this paper, we present

an extension of the Chebyshev spectral method using quasi-inverse technique to directly

solve the Helmholtz equation with the homogeneous Robin boundary conditions and the

general biharmonic equation with the first and second boundary conditions. For the gen-

eral biharmonic equation, we give a uniform treatment for the first and second boundary

conditions.

The main idea is that we employ a truncated series of Chebyshev polynomials to ap-

proximate the unknown function, and the differential operator is expanded by Chebyshev

polynomials which vector of coefficients is represented by the product of derivative matrix

and vector of Chebyshev coefficients of unknown function. The coefficients of this series

are taken to be equal to the coefficients of the right-hand side expansion. According to

Galerkin basis satisfying boundary conditions, we identify a transformation matrix which

transforms the Chebyshev and Galerkin coefficients, and then multiply a quasi-inverse

matrix on both sides of the resulting spectral system to obtain a pre-multiplied system

Av̄ = B f̄ , where A and B have band structure. After we solve this system of equations, the

Galerkin spectral coefficients are converted back to Chebyshev spectral coefficients. We

obtain the approximation solution from spectral space to physical space using the forward

Chebyshev transform by FFT.

The remainder of the paper is organized as follows. In the next section, we introduce

some notations and summarize a few mathematical facts used in the remainder of the pa-

per. In Section 3, we consider the Helmholtz equations for one, two and three dimensional

cases. In Section 4, we study the general biharmonic equations for one and two dimen-

sional cases. In Section 5, we present some numerical results. Finally, some concluding

remarks are given in Section 6.

2. Preliminaries

2.1. Notation

We introduce some basic notations as follows:


