Orthogonal Polynomials with Respect to Modified Jacobi Weight and Corresponding Quadrature Rules of Gaussian Type

Marija P. Stanić^{1,*} and Aleksandar S. Cvetković²

 ¹ Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
 ² Department of Mathematics and Informatics, Faculty of Mechanical

Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia.

Received 4 November 2010; Accepted (in revised version) 7 February 2011

Available online 7 November 2011

Abstract. In this paper we consider polynomials orthogonal with respect to the linear functional $\mathcal{L} : \mathcal{P} \to \mathbb{C}$, defined on the space of all algebraic polynomials \mathcal{P} by

$$\mathcal{L}[p] = \int_{-1}^{1} p(x)(1-x)^{\alpha-1/2} (1+x)^{\beta-1/2} \exp(i\zeta x) dx,$$

where $\alpha, \beta > -1/2$ are real numbers such that $\ell = |\beta - \alpha|$ is a positive integer, and $\zeta \in \mathbb{R} \setminus \{0\}$. We prove the existence of such orthogonal polynomials for some pairs of α and ζ and for all nonnegative integers ℓ . For such orthogonal polynomials we derive three-term recurrence relations and also some differential-difference relations. For such orthogonal polynomials the corresponding quadrature rules of Gaussian type are considered. Also, some numerical examples are included.

AMS subject classifications: 33C47, 41A55, 65D30 **Key words**: Orthogonal polynomials, modified Jacobi weight function, recurrence relation, Gaussian quadrature rule.

1. Introduction

In this paper we continue investigation on orthogonality with respect to the exponential modification of classical weight functions, studied in [5–8]. Let us suppose that $\alpha, \beta > -1/2$ are real numbers such that $\ell = |\beta - \alpha|$ is a positive integer, and $\zeta \in \mathbb{R} \setminus \{0\}$. We are concerned with the following measure

$$d\mu(x) = (1-x)^{\alpha-1/2} (1+x)^{\beta-1/2} \exp(i\zeta x) \chi_{[-1,1]}(x) dx$$
(1.1)

http://www.global-sci.org/nmtma

©2011 Global-Science Press

^{*}Corresponding author. *Email addresses:* stanicm@kg.ac.rs (M. P. Stanić), acvetkovic@mas.bg.ac.rs (A. S. Cvetković)

Orthogonal Polynomials with Respect to Modified Jacobi Weight

supported on the interval [-1, 1]. We investigate the question connected with the existence of a sequence of orthogonal polynomials $\{\pi_n\}_{n \in \mathbb{N}_0}$ with respect to the linear moment functional $\mathcal{L} : \mathcal{P} \to \mathbb{C}$, defined on the space of all algebraic polynomials \mathcal{P} by

$$\mathcal{L}[p] = \int_{-1}^{1} p(x) d\mu(x) = \int_{-1}^{1} p(x) (1-x)^{\alpha-1/2} (1+x)^{\beta-1/2} \exp(\mathrm{i}\zeta x) dx.$$
(1.2)

The corresponding moments are $\mu_k = \mathcal{L}[x^k], k \in \mathbb{N}_0$.

This paper is organized as follows. In Section 2 the existence of orthogonal polynomials for some parameters α and ζ and for all positive integers $\ell = |\beta - \alpha|$ is proved. Section 3 is devoted to three-term recurrence relations as well as to some differential-difference relations. Finally, in Section 4 the corresponding quadrature rules of Gaussian type are considered. Such quadrature rules are suitable for computation of integrals of highly oscillatory functions of the form $\int_{-1}^{1} f(x)(1-x)^{\alpha-1/2}(1+x)^{\beta-1/2}e^{i\zeta x} dx$. Notice that such kind of integrals appears in many branches of applied and computational science, e.g., for determining of the retarded potentials of electromagnetic field of a linear wire antenna (see [9]).

2. Existence of orthogonal polynomials

The measure (1.1) can be written in the following form

$$d\mu(x) = \begin{cases} (1+x)^{\ell} (1-x^2)^{\alpha-1/2} \exp(i\zeta x) \chi_{[-1,1]}(x) dx, & \beta > \alpha, \\ (1-x)^{\ell} (1-x^2)^{\beta-1/2} \exp(i\zeta x) \chi_{[-1,1]}(x) dx, & \alpha > \beta. \end{cases}$$

Therefore, in the sequel we consider the measures

$$d\mu^{\pm}(x) = (1 \pm x)^{\ell} (1 - x^2)^{\alpha - 1/2} \exp(i\zeta x) \chi_{[-1,1]}(x) dx,$$

where $\alpha > -1/2$ and ℓ is a positive integer, i.e., we consider the existence of polynomials orthogonal with respect to the linear functionals

$$\mathcal{L}^{\pm,\zeta,\alpha,\ell}(p) := \mathcal{L}^{\pm}(p) = \int_{-1}^{1} p \,\mathrm{d}\mu^{\pm}, \qquad p \in \mathcal{P}.$$
(2.1)

The moments

$$\mu_k^{\pm} = \int_{-1}^{1} x^k (1 \pm x)^{\ell} (1 - x^2)^{\alpha - 1/2} \exp(i\zeta x) dx$$
(2.2)

can be expressed in terms of Bessel functions J_{ν} of the order ν (see [10, p. 40]). We restrict our attention only to the case $\zeta > 0$, since the corresponding results for $\zeta < 0$ can be obtained by a simple conjugation, because $\mu_k^{\pm}(-\zeta) = \overline{\mu_k^{\pm}(\zeta)}, k \in \mathbb{N}_0$.