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Abstract. In a variety of modern applications there arises a need to tessellate the do-
main into representative regions, called Voronoi cells. A particular type of such tes-
sellations, called centroidal Voronoi tessellations or CVTs, are in big demand due to
their optimality properties important for many applications. The availability of fast and
reliable algorithms for their construction is crucial for their successful use in practical
settings. This paper introduces a new multigrid algorithm for constructing CVTs that is
based on the MG/Opt algorithm that was originally designed to solve large nonlinear
optimization problems. Uniform convergence of the new method and its speedup com-
paring to existing techniques are demonstrated for linear and nonlinear densities for
several 1d and 2d problems, and O(k) complexity estimation is provided for a problem
with k generators.
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1. Introduction

A Voronoi diagram can be thought of as a map from the set of N -dimensional vectors
in the domain Ω ⊂ RN into a finite set of vectors {zi}

k
i=1 called generators. It associates

with each zi a nearest neighbor region that is called a Voronoi region {Vi}
k
i=1. That is,

for each i, Vi consists of all points in the domain Ω that are closer to zi than to all the
other generating points, and a Voronoi tessellation refers to the tessellation of a given
domain into the Voronoi regions {Vi}

k
i=1 associated with a set of given generating points

{zi}
k
i=1 ⊂ Ω [1, 35]. With a suitably defined distortion measure, an optimal tessellation
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is given by a centroidal Voronoi tessellation, which is constructed as follows. For a given
density function ρ defined on Ω, we may define the centroids, or mass centers, of regions
{Vi}

k
i=1 by

z∗i =
�

∫

Vi

yρ(y) dy
��

∫

Vi

ρ(y) dy
�−1

.

A centroidal Voronoi tessellation (CVT) is then a tessellation for which the generators of the
Voronoi diagram coincide with the centroids of their respective Voronoi regions, in other
words, zi = z∗i for all i.

Given a set of points {zi}
k
i=1 and a tessellation {Vi}

k
i=1 of the domain, we may define

the energy functional or the distortion value for the pair ({zi}
k
i=1, {Vi}

k
i=1) by

F
�

{zi}
k
i=1, {Vi}

k
i=1

�

=

k
∑

i=1

∫

Vi

ρ(y)|y− zi|
2 dy.

If the Voronoi tessellation {Vi}
k
i=1 is determined from {zi}

k
i=1 then we write

G
�

{zi}
k
i=1

�

≡F
�

{zi}
k
i=1, {Vi}

k
i=1

�

. (1.1)

The minimizer of G necessarily forms a CVT which illustrates the optimization property of
the CVT [7]. This functional appears in many engineering applications and the relation of
its minimizers with CVTs is studied, for instance, in [18, 19, 38]. For instance, it provides
optimal least-squares vector quantizer design in electrical engineering applications. The
CVT concept also has applications in diverse areas such as astronomy, biology, image and
data analysis, resource optimization, sensor networks, geometric design, and numerical
partial differential equations [2, 7–10, 12, 13, 21, 22, 25, 30, 40, 42]. In [7, 11], extensive
reviews of the modern mathematical theory and diverse applications of CVTs are provided,
and this list is constantly growing.

The most widely used method for computing CVTs is the algorithm developed by Lloyd
in the 1960s [28]. Lloyd’s algorithm represents a fixed-point type iterative algorithm con-
sisting of the following simple steps: starting from an initial configuration (a Voronoi tes-
sellation corresponding to an old set of generators), a new set of generators is defined by
the mass centers of the Voronoi regions. The domain is re-tessellated and a new set of
centroids is taken as generators. This process is continued until some stopping criterion
is met. For other types of algorithms for computing CVTs we refer to [1, 11, 14, 17]. It
was shown that Lloyd’s algorithm decreases the energy functional G ({zi}

k
i=1) at every it-

eration, which gives strong indications of its practical convergence. Despite its simplicity,
proving convergence of Lloyd’s algorithm is not a trivial task. Some recent work [6, 16]
has substantiated earlier claims about global convergence of Lloyd’s algorithm, although
single-point convergence for a general density function ρ is still not rigorously justified.

For modern applications of the CVT concept in large scale scientific and engineering
problems such as data communication, vector quantization and mesh generation, it is cru-
cial to have fast and memory-efficient algorithms for computing the CVTs. Variants of


