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Abstract. Total variation regularization has good performance in noise removal and

edge preservation but lacks in texture restoration. Here we present a texture-preserving

strategy to restore images contaminated by blur and noise. According to a texture de-

tection strategy, we apply spatially adaptive fractional order diffusion. A fast algorithm

based on the half-quadratic technique is used to minimize the resulting objective func-

tion. Numerical results show the effectiveness of our strategy.
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1. Introduction

Noise reduction and deblurring are usually used in a pre-processing stage in image

restoration to improve image quality. In this paper, we focus on texture preserving restora-

tion of images corrupted by additive noise and spatially-invariant Gaussian blur. The most

common image degradation model, where the observed data f ∈ Rn2

is related to the

underlying n× n image rearranged into a vector u ∈ Rn2

, is

f = Bu+ e, (1.1)

where e ∈ Rn2

accounts for the random perturbations due to noise and B is a n2 × n2

matrix representing the linear blur operator.

∗Corresponding author. Email addresses: rhan�math.uhk.edu.hk (R. H. Chan),alanza�ares.unibo.it (A. Lanza), serena.morigi�unibo.it (S. Morigi),fiorella.sgallari�unibo.it (F. Sgallari)

http://www.global-sci.org/nmtma 276 c©2013 Global-Science Press



An Adaptive Strategy for the Restoration of Textured Images 277

It is well known that restoring the image u is a very ill-conditioned problem and a

regularization method should be used. A popular approach determines an approximation

of u as the solution of the minimization problem

min
u

n1
p
‖Bu− f ‖pp +

λ

q
‖A(u)‖qq

o
, (1.2)

where A is a regularization operator and λ is a positive regularization parameter that

controls the trade-off between the data fitting term and the regularization term [13,25,27].

For p = 2 and q = 2, we get the classical Tikhonov regularization [11,13]. This approach

enforces smoothness of the solution and suppresses noise by penalizing high-frequency

components, thus also image edges can be smoothed out in the process.

Numerous regularization approaches and advances numerical methods have been pro-

posed in the literature to better preserve edges, including alternating minimization algo-

rithms [1], multilevel approaches [16], non-local means filters [4].

A very popular choice in the literature for regularization is based on the total varia-

tion (TV) norm. Total variation minimization was originally introduced for noise reduc-

tion [7,25] and has also been used for image deblurring [14] and super-resolution image

reconstruction [17]. The TV regularization (ℓ2-TV) is obtained from (1.2) by setting p = 2,

q = 1 and A(u) the gradient magnitude of u. If we let ∇ui := (Gx ,iu, Gy,iu)
T , with Gx ,i,

Gy,i representing the ith rows of the x and y-directional finite difference operators Gx , Gy ,

respectively, then the regularization term is defined by the TV-norm

‖u‖T V = ‖A(u)‖1 :=

n2∑

i=1

Æ
(Gx ,iu)

2 + (Gy,iu)
2.

The distinctive feature of TV regularization is that image edges can be preserved, but the

restoration can present staircase effects.

A variant of the ℓ2-TV regularization is the ℓ1-TV regularization which is obtained from

(1.2) by replacing the ℓ2 norm in the data-fitting term by ℓ1 norm:

min
u
{‖Bu− f ‖1+λ‖u‖TV}, (1.3)

see, e.g., [5,26–29] for discussions on this model. This model has a number of advantages,

including superior performance with non-Gaussian noise such as impulse noise, see [20].

However, it is well known that the ℓ1-TV regularization has problems in preserving tex-

tures, see [6,28].

In image denoising, recent works have dealt with this drawback mainly by two differ-

ent strategies. In [10] the ℓ2-TV model is adopted using a spatially variant regularizing

parameter λ, selected according to local variance measures. In [2], a fractional order

anisotropic diffusion model is introduced, which leads to a "natural interpolation" between

the Perona-Malik equations [22] and fourth-order anisotropic diffusion equations [15].

An adaptive fractional-order multi-scale model is proposed in [31,32], where the model is

applied to noise removal and the texture is detected by a variant of the strategy in [10].


