
Numer. Math. Theor. Meth. Appl. Vol. 6, No. 1, pp. 72-94

doi: 10.4208/nmtma.2013.mssvm04 February 2013

3D Anisotropic Diffusion on GPUs by Closed-Form

Local Tensor Computations

Arjan Kuijper1,2,∗, Andreas Schwarzkopf2, Thomas Kalbe2,
Chandrajit Bajaj3, Stefan Roth2 and Michael Goesele2

1 Fraunhofer IGD, 64283 Darmstadt, Germany.
2 Department of Computer Science, TU Darmstadt, D-64289 Darmstadt,

Germany.
3 ICES-CVC, University of Texas at Austin, Austin, Texas 78712, USA.

Received 6 December 2011; Accepted (in revised version) 15 May 2012

Available online 11 January 2013

Abstract. We present an efficient implementation of volumetric anisotropic image dif-

fusion filters on modern programmable graphics processing units (GPUs), where the

mathematics behind volumetric diffusion is effectively reduced to the diffusion in 2D

images. We hereby avoid the computational bottleneck of a time consuming eigenvalue

decomposition in R3. Instead, we use a projection of the Hessian matrix along the

surface normal onto the tangent plane of the local isodensity surface and solve for the

remaining two tangent space eigenvectors. We derive closed formulas to achieve this

and prevent the GPU code from branching. We show that our most complex volumet-

ric anisotropic diffusion filters gain a speed up of more than 600 compared to a CPU

solution.

AMS subject classifications: 68U10

Key words: Image processing, enhancement, anisotropic diffusion, tensors, 3D filtering.

1. Introduction

Diffusion equations can be considered as physically motivated iterative filters applying

a diffusion process on (mostly) noisy image data. They smooth out noise effectively and

deliver a framework providing a scale space representation of the image, when time is

considered as a natural, continuous scale space parameter [20, 21, 24, 25, 37]. They are

well known in the field of image processing and have been subject to many enhancements

during the last decades, see e.g. the monographs by Weickert [38, 40] for a complete and

comprehensive introduction. Especially the ability to steer the direction and amount of

∗Corresponding author. Email address: arjan.kuijper�gris.informatik.tu-darmstadt.de (A. Kui-

jper)

http://www.global-sci.org/nmtma 72 c©2013 Global-Science Press



3D Anisotropic Diffusion on GPUs 73

Figure 1: S
ale-spa
e representation of homogeneous (left) and inhomogeneous di�usion (right) for a2D image. 200 iterations, ∆t = 0.05.
diffusion in pre-described directions based on local image structure increased the popular-

ity of these processes. Fig. 1 gives a visual example of the effect of two different types of

diffusion on a 2D image extended with a time axes.

Recent publications in both computer graphics and computer vision apply this diffu-

sion for smoothing of normal maps [33], fairing of surfaces and functions on surfaces and

meshes [4,5,27], and image compression and inpainting [11], to mention only some pos-

sibilities. One should note the essential difference between approaches on the full voxel

set and subsets – e.g. meshes – describing shapes. Anisotropic diffusion of whole volume

images or general meshes [1, 26] and smoothing vector valued volume images [41] are

also common tasks arising in medical applications. It has been reported in 3D imaging as

“the most favorable approach regarding the efficiency of noise reduction, signal preserva-

tion and computing effort” [10], but the computation time is a bottleneck on traditional

CPU implementations for (close to) real-time applications. For off-line denoising and en-

hancing of 2D images, impressive and fast results are obtained by Weickert’s (nD) AOS im-

plementation [38]. It can be parallelized for many types of diffusion by exploiting intrinsic

parallelism. Weickert et al. showed this using a regularized Perona-Malik diffusion filter

on a 138× 208× 138 3D ultrasound data set [36]. Alternatively, fast explicit schemes can

be used [13].

Anisotropic diffusion requires to solve second order partial differential equations (PDEs)

numerically. As the amount of discretized data is rapidly increasing, especially in the vol-

umetric 3D case, it is a perfect application for modern graphic cards. Current Graphics

Processing Units (GPUs) can easily handle large medical data sets, for example CT or MRI

images beyond the traditional 5123 voxels boundary [2,18]. The current GPU SIMD (Sin-

gle instruction, multiple data) architecture allows to solve each iteration in a few millisec-

onds due to massively parallel processing [7]. The big “however” is that this holds only

for equations that lead to an efficient parallelization. This is at least difficult for most in-

teresting, non-linear, PDEs. This is due to the local structure in each voxel that determines


