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Abstract. In this paper we present a first supercloseness analysis for higher-order
Galerkin FEM applied to a singularly perturbed convection-diffusion problem. Using

a solution decomposition and a special representation of our finite element space,

we are able to prove a supercloseness property of p+ 1/4 in the energy norm where
the polynomial order p ≥ 3 is odd.
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1. Introduction

Consider the convection dominated convection-diffusion problem

−ε∆u− (b · ∇)u+ cu = f, in Ω = (0, 1)2, (1.1a)

u = 0, on ∂Ω, (1.1b)

where c ∈ L∞(Ω), b ∈W 1
∞(Ω), f ∈ L2(Ω) and 0 < ε≪ 1, assuming

c+
1

2
div b ≥ γ > 0. (1.2)

For a problem with exponential layers, i.e. in the case b1(x, y) ≥ β1 > 0, b2(x, y) ≥
β2 > 0, we have for linear or bilinear elements in the so called energy norm

|||v|||2ε := ε‖∇v‖20 + ‖v‖
2
0,
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where ‖·‖0 denotes the usual L2-norm, on a Shishkin mesh (for the exact definition see

Section 2)
∣∣∣∣∣∣u− uN

∣∣∣∣∣∣
ε
. N−1 lnN.

We use the notation a . b, if a generic constant C independent of ε and N exists with

a ≤ Cb.

However, for bilinear elements Zhang [23] and Linß [13] observed a supercloseness

property: the difference between the Galerkin solution uN and the standard piecewise

bilinear interpolant uI of the exact solution u satisfies

∣∣∣∣∣∣uI − uN
∣∣∣∣∣∣

ε
. (N−1 lnN)2.

Supercloseness is a very important property. It allows optimal error estimates in

L2 (Nitsche’s trick cannot be applied), improved error estimates in L∞ inside the layer

regions and recovery procedures for the gradient, important in a posteriori error esti-

mation.

In the last ten years supercloseness for bilinear elements was also proved for prob-

lems with characteristic layers [6], for S-type meshes [13], for Bakhvalov meshes [15]

and for several stabilisation methods, including streamline diffusion FEM (SDFEM),

continuous interior penalty FEM (CIPFEM), local projection stabilisation FEM (LPS-

FEM) and discontinuous Galerkin (see e.g. [3, 7–9, 17, 18, 21]). Recently, even corner

singularities were included in the analysis [14].

For Qp-elements with p ≥ 2 the situation is very different. Using the so-called

vertex-edge-cell interpolant πu [11, 12] instead of the standard Lagrange-interpolant

with equidistant interpolation points, Stynes and Tobiska [19] proved for SDFEM (but

not for the Galerkin FEM)

∣∣∣∣∣∣πu− ũN
∣∣∣∣∣∣

ε
. N−(p+1/2),

where ũN denotes the SDFEM solution. It is not clear whether this estimate is optimal.

The numerical results of [4, 5] indicate for the Galerkin FEM and p ≥ 3 a superclose-

ness property of order p + 1 for two different interpolation operators. One of them is

the vertex-edge-cell interpolator πu, the other one is the Gauss-Lobatto interpolation

operator INu. For SDFEM, the order p+ 1 is observed numerically for all p ≥ 2.

In the present paper we study the Galerkin FEM for odd p. We shall prove some

supercloseness properties, but the achieved order is probably not optimal.

The paper is organised as follows. In Section 2 we provide descriptions of the

underlying mesh, the numerical method and a solution decomposition. The main part

is Section 3 where the proof of our assertion can be found. As the proof is rather

technical we provide it in full only for p = 3 and demonstrate its generalisation for

arbitrary odd p ≥ 5. In Section 4 we present some numerical simulations.


