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Abstract. In this paper, we propose a numerical method for solving the heat equa-
tions with interfaces. This method uses the non-traditional finite element method
together with finite difference method to get solutions with second-order accuracy.
It is capable of dealing with matrix coefficient involving time, and the interfaces un-
der consideration are sharp-edged interfaces instead of smooth interfaces. Modified
Euler Method is employed to ensure the accuracy in time. More than 1.5th order
accuracy is observed for solution with singularity (second derivative blows up) on
the sharp-edged interface corner. Extensive numerical experiments illustrate the
feasibility of the method.
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1. Introduction

Interface problems arise in problems involving multi-physics/multi-phase materials,
which is common in fluid dynamics, electromagnetic, biological systems [1, 2], etc.
Therefore, they attract considerable interest both theoretically and numerically in the
past decades. However, due to the low global regularity and the irregular geometry of
the interface, it is difficult to design a highly efficient method for such problems. In this
paper, we seek the solution for heat equations with sharp-edged interface and matrix
coefficient. The setting of the problem is as follows:

Consider a rectangular domain 2 = (Zyin, Tmaz) X Ymin, Ymaz)- L is an interface
prescribed by the zero level-set {(z,y) € Q | ¢(x,y) = 0} of a level-set function ¢(x,y).
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The unit normal vector of I" is n = % pointing from Q~ = {(z,y) € Q| ¢(z,y) < 0}
to QT = {(x,y) € Q| ¢(x,y) > 0}. Now the governing equation reads

du(x, t)
ot

=V (B 1) Vulx b)) = f(x,t), in (Q\T) < (0,7),  (1.1)

in which x = (21, ...,z4) denotes the spatial variables and v/ is the gradient operator.
The coefficient 3(x, t) is assumed to be a d x d matrix that is uniformly elliptic on each
disjoint subdomain, Q~ and 9", and its components are continuously differentiable on
each disjoint subdomain, but they may be discontinuous across the interface I'. The
right-hand side f(x,t) is assumed to lie in L?().

Given functions a and b along the interface I", we prescribe the jump conditions on
I'x(0,T)

[u(x,t)]p = ut(x,t) —u”(x,t) = a(x, 1),
[(B(x,t) v ulx, 1)) -nfp =n- (B7(x,t) 7 u'(x,1)) (1.2)
(B G t) v (1) = b ),

The superscripts “4” refer to limits taken from within the subdomains Q. Finally, we
prescribe initial and boundary conditions

u(x, 0) = uo(x), in ©,

u(x,t) = g(x,t), on 9Q x (0,T). (1.3)

for a given function g on the boundary 02 and u( on the domain €.

Since the pioneer work of Peskin in 1977, much attention has been paid to solving
interface problems. The Immersed Boundary Method [3, 4] that he proposed uses a
numerical approximation of the J-function, which smears out the solution on a thin
finite band around the interface I". In [5], the “immersed boundary” method was
combined with the level set method, resulting in a first order numerical method that is
simple to implement, even in multiple spatial dimensions. However, for both methods,
the numerical smearing at the interface forces continuity of the solution at the interface,
regardless of the interface condition [u] = a, where a might not be zero.

After that, in order to get higher order accuracy, researchers has done a lot of work
on the finite difference solution for interface problems. The main idea is to use differ-
ence scheme and stencils carefully near the interface to incorporate jump conditions
and achieve high order local truncation error using Taylor expansion. The Immersed
Interface Method [6, 7] incorporates the interface conditions into the finite difference
scheme near the interface to achieve second-order accuracy based on a Taylor expan-
sion in a local coordinate system. The corresponding linear system is sparse, but not
symmetric or positive definite.

The Boundary Condition Capturing Method [8] uses the idea of Ghost Fluid Method
[9] to capture the boundary conditions. The method extends the solution from one
side across the interface using the jump conditions. The GFM is robust and simple to
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