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Abstract. This paper deals with a more general class of singularly perturbed bound-
ary value problem for a differential-difference equations with small shifts. In partic-
ular, the numerical study for the problems where second order derivative is multi-
plied by a small parameter ¢ and the shifts depend on the small parameter ¢ has been
considered. The fitted-mesh technique is employed to generate a piecewise-uniform
mesh, condensed in the neighborhood of the boundary layer. The cubic B-spline
basis functions with fitted-mesh are considered in the procedure which yield a tridi-
agonal system which can be solved efficiently by using any well-known algorithm.
The stability and parameter-uniform convergence analysis of the proposed method
have been discussed. The method has been shown to have almost second-order
parameter-uniform convergence. The effect of small parameters on the boundary
layer has also been discussed. To demonstrate the performance of the proposed
scheme, several numerical experiments have been carried out.
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1. Introduction

In this paper, we consider the numerical approximation of the more general sin-
gularly perturbed differential-difference equation with small delay as well as advance
with layer behavior. DDEs of this type arise naturally in the theoretical analysis of
neuronal variability. There have been many advanced models of nerve membrane po-
tential in the presence of random synaptic input. Reviews can be found in Fienberg [9],
Holden [13], Segundo et al. [32]. In 1965, Stein [36] has given a differential-difference
equation model incorporating stochastic effects due to neuronal variability and approx-
imate the solution using Monte Carlo techniques. Stein’s model contains the following
assumptions:
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e Excitatory impulses arrive according to a Poisson process 7 ( f¢,t), each event of
which leads to an instantaneous increase in the membrane depolarization V' (¢) by
ae, Whereas inhibitory current impulses arrive at event times in a second Poisson
process 7(f;,t), which is independent of 7(f.,¢) and causes V (t) to decrease by
a; .

e If depolarization reaches a threshold of r units, the neuron fires an impulse.

e After each neuronal firing there is a refractory period of duration ¢(, during which
the impulses have no effect and the membrane depolarization V' (¢), is reset to
zero.

e At times ¢t > ty, each impulse produces unit depolarization.

e For sub-threshold levels, the depolarization decays exponentially among impulses
with time constant .

This model and its modifications have been used as a basis for many studies devoted
to the theoretical description of neuronal activities [3,34,37,40]. One of the principle
difficulty with the application of this model lies in solving the delay-differential equa-
tions that form the mathematical expression of the model [40]. Though there have
been extensive studies of the properties of the solutions of many kinds of functional
equations [2,11] a little progress has been made on equations of type (1.1) with both
forward (advance) and backward (delay) delays. These applications motivates the ap-
proximation of DDEs of Stein’s model type.

In 1967, Stein [35] generalized this model to deal with a distribution of postsy-
naptic potential amplitudes. Johannesma [14] and Tuckwell [37] included the reversal
potentials into account. Various other models for neuronal activity have been proposed
and many are discussed in Holden’s book [13].

We state a model problem for a general boundary value problem for a singularly
perturbed differential-difference equation containing both type of shifts (negative as
well as positive shifts)

ey (x) + pla)y (x) + q(z)y(z — ) + r(@)y(z) + s(@)y(z +n) = f(z), (1.1

Vx € Q= (0,1) and subject to the interval conditions
y(x) = ¢(x) for —d(e) <z <0, y(z)=v¢(x) for 1<z <1+mn(e), (1.2)

where ¢ is a small parameter 0 < ¢ < 1, d(¢) and n(e) are of o(¢). The functions
p(z), q(z), r(z), s(x), f(x), ¢(x) and ¢(x) are sufficiently smooth. For a function
y(z) to be smooth solution of problem (1.1)-(1.2), it must be continuous on [0, 1]
and continuously differentiable on (0, 1) satisfying (1.1). It is well-known [5, 27] for
0(g) = n(e) = 0, the solution of the boundary value problem of the DDEs (1.1)-(1.2)
exhibits layer at the left end or right end of the interval depending on the sign of p(z).
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