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Abstract. Sign truncated matching pursuit (STrMP) algorithm is presented in this

paper. STrMP is a new greedy algorithm for the recovery of sparse signals from the

sign measurement, which combines the principle of consistent reconstruction with
orthogonal matching pursuit (OMP). The main part of STrMP is as concise as OMP

and hence STrMP is simple to implement. In contrast to previous greedy algorithms

for one-bit compressed sensing, STrMP only need to solve a convex and uncon-
strained subproblem at each iteration. Numerical experiments show that STrMP is

fast and accurate for one-bit compressed sensing compared with other algorithms.
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1. Introduction

Compressed sensing, or compressive sensing provides a new method of data sam-

pling and reconstruction, which allows to recover sparse signals from much fewer mea-

surements [5,7]. Suppose that we have an unknown sparse signal x̂ ∈ R
n with ‖x̂‖0 ≤ s

and s ≪ n, where ‖ · ‖0 denotes the number of nonzero components. We observe the

signal as

b = Ax̂,

where A ∈ R
m×n is called measurement matrix, b ∈ R

m is the vector of measurements.

Compressed sensing shows that only m = O(s log(n/s)) measurements are sufficient

for exact reconstruction of x̂ under many settings for the measurement matrix A [6,7].

1.1. One-Bit compressed sensing

In compressed sensing, it is supposed that the measurements have infinite bit pre-

cision. However, in practice what we get is quantized measurements. In other words,

the entries in the measurement vector b must be mapped to a discrete set of values
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A. There are much work about the recovery of the general signal from the quantized

measurements [18]. In this paper, we focus on the case where A = {−1, 1} with the

mapping being done by the sign function. So we need to recover an s-sparse signal

from y := sign(b) ∈ {−1, 1}m. This problem is called one-bit compressed sensing,

which was first introduced by Boufounos-Baraniuk [4]. In one-bit compressed sensing,

we observe original signal as:

y = sign(Ax̂),

where y ∈ R
m with each element is sign of the corresponding element of Ax̂. That

means we lost all magnitude information of Ax̂. Following [8], x♯ ∈ R
n is called a

solution for one-bit compressed sensing corresponding to A and x̂ if it satisfies

(i) consistence, i.e. sign(Ax♯) = sign(Ax̂),

(ii) sparsity, i.e. ‖x♯‖0 ≤ ‖x̂‖0.

A simple observation is that sign(Acx̂) = sign(Ax̂) and ‖cx̂‖0 ≤ ‖x̂‖0 where c > 0 is a

scale. Thus the best one-bit compressed sensing can do is to recover x̂ up to a positive

scale. Therefore, we usually expect to recover original signal on the unit Euclidean

sphere.

1.2. Previous work

A straightforward way to obtain a solution for one-bit compressed sensing is to

solve the following program:

min ‖x‖0
s. t. y = sign(Ax) and ‖x‖2 = 1.

(1.1)

Since (1.1) is computational intractable, similar with compressed sensing, one can

replace the ℓ0 norm by the more tractable ℓ1 norm and obtain that (see [4,9,10])

min ‖x‖1
s. t. y = sign(Ax) and ‖x‖2 = 1.

(1.2)

Many algorithms have been proposed to solve (1.2). Particularly, in [9], Laska et. al.

use the augmented Lagrangian optimization framework to design RSS algorithm by em-

ploying a restricted-step subroutine to solve a non-convex subproblem. Binary iterative

hard thresholding (BIHT) and adaptive outlier pursuit (AOP) are introduced in [8]

and [12], respectively. BIHT is a modification of iterative hard thresholding which is

to solve compressed sensing problem (see [2]). AOP is a robust algorithm built on

BIHT, and it is exactly BIHT when measurements are noise free. The numerical experi-

ments in [12] show that AOP performs better than the previous existing algorithms in

terms of the recovery performance. In [10], Plan and Vershynin replace the normaliza-

tion constraint ‖x‖2 = 1 by ‖Ax‖1 = c0 and give an analysis of the following convex
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