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Abstract. Most current prevalent iterative methods can be classified into the so-
called extended Krylov subspace methods, a class of iterative methods which do not

fall into this category are also proposed in this paper. Comparing with traditional

Krylov subspace methods which always depend on the matrix-vector multiplication
with a fixed matrix, the newly introduced methods (the so-called (progressively) ac-

cumulated projection methods, or AP (PAP) for short) use a projection matrix which
varies in every iteration to form a subspace from which an approximate solution is

sought. More importantly an accelerative approach (called APAP) is introduced to

improve the convergence of PAP method. Numerical experiments demonstrate some
surprisingly improved convergence behavior. Comparison between benchmark ex-

tended Krylov subspace methods (Block Jacobi and GMRES) are made and one can

also see remarkable advantage of APAP in some examples. APAP is also used to
solve systems with extremely ill-conditioned coefficient matrix (the Hilbert matrix)

and numerical experiments shows that it can bring very satisfactory results even
when the size of system is up to a few thousands.
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1. Introduction

Linear systems of the form

Ax = b (1.1)

where A ∈ Rn×n being nonsingular arise from tremendous mathematical applications

and are the fundamental objects of almost every computational process. From the very

ancient Gaussian elimination to the state-of-the-art methods like CG, MINRES, GMRES,

as well as Multigrid method [1–3,14–16], numerous solvers of linear systems have been
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introduced and studied in extreme detail. Basically all solvers fall into two categories:

direct methods and iterative methods.

Except for those specially designed methods for systems with some special proper-

ties, like symmetry, sparsity or triangularity, elimination methods based on LU factor-

ization seem to be most widely accepted for general linear systems with satisfactory

stability due to its flexibility of pivoting strategies [8, 9, 13]. Comparing with direct

methods, iterative methods are a much larger family and have been accepting domi-

nant attention. Since they make it possible for people to get a very ‘close’ solution to a

system in much less arithmetic operation and storage requirement than direct methods

and thus often lead to huge savings of time and costs.

Although some state-of-the-art direct methods can be applied to solve systems with

pretty large amount of unknowns [3,10] in some situations, for even larger scale sparse

systems (say, with unknowns up to a few millions) one can resort to the LGO-based

solver [18, 19] recently introduced by authors, iterative methods are the only option

available for many practical problems. For example, detailed three-dimensional mul-

tiphysics simulations lead to linear systems comprising hundreds of millions or even

billions of equations in as many unknowns, systems with several millions of unknowns

are now routinely encountered in many applications, making the use of iterative meth-

ods virtually mandatory.

The history of iterative methods can largely be divided into two major periods. The

first period begins with 1850’s while Jacobi and Gauss etc. established the first iterative

methods named after these outstanding researchers and the period ends in 1970’s. The

majority of these iterative method are classified as stationary methods, which usually

take the form:

xk+1 = Gxk + v, (k = 0, 1, 2, · · · ). (1.2)

where v is a fixed vector and x0 as the first guess. Excellent books covering the detailed

analysis of error and convergence of these methods include works by Axelsson [2],

Datta [7], Varga [22] and David Young [25], etc. The second period begins in the mid-

1970s and is dominated by Krylov subspace methods and preconditioning techniques.

Generally Krylov subspace methods use the following form

xk = x0 + yk, (k = 1, 2, · · · ) (1.3)

where x0 is an initial guess and yk belongs to a so-called Krylov subspace

Km(G, v0) ≡ span{v0, Gv0, G
2v0, · · · , Gm−1v0}.

By assuming different strategies for seeking yk from Km(G, v0), one gets a variety of

iterative methods such as CG, BiCG, GMRES, FOM, MINRES, SYMMLQ, QMR [11, 17,

20,21,23], etc.

As a matter of fact, if we would refer extended Krylov subspace methods as those

at each step of iteration the correction vector or approximate solution always comes

from Krylov subspaces with a few fixed “generator” matrices (by a “generator” matrix
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