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Abstract. In this paper, we present two adaptive methods for the basis enrichment

of the mixed Generalized Multiscale Finite Element Method (GMsFEM) for solving

the flow problem in heterogeneous media. We develop an a-posteriori error indica-
tor which depends on the norm of a local residual operator. Based on this indicator,

we construct an offline adaptive method to increase the number of basis functions

locally in coarse regions with large local residuals. We also develop an online adap-
tive method which iteratively enriches the function space by adding new functions

computed based on the residual of the previous solution and special minimum en-
ergy snapshots. We show theoretically and numerically the convergence of the two

methods. The online method is, in general, better than the offline method as the on-

line method is able to capture distant effects (at a cost of online computations), and
both methods have faster convergence than a uniform enrichment. Analysis shows

that the online method should start with a certain number of initial basis functions

in order to have the best performance. The numerical results confirm this and show
further that with correct selection of initial basis functions, the convergence of the

online method can be independent of the contrast of the medium. We consider
cases with both very high and very low conducting inclusions and channels in our

numerical experiments.
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1. Introduction

Many real-world problems involve multiple scales and high contrast. To solve

these problems, we often adopt some forms of model reduction such as upscaling and
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multiscale methods. These methods can reduce the degrees of freedom of a prob-

lem. For example, in upscaling methods [17, 22, 25, 28], the multiscale media are

upscaled so that the problem can be solved on a coarse grid. In multiscale meth-

ods [1, 3, 5, 6, 8, 9, 12, 16, 18–21, 23, 24, 27], basis functions are solved on a fine grid

to capture the multiscale features of a medium and the problem is then solved on the

coarse grid with these basis functions.

In this paper, we will present two adaptive enrichment algorithms for the general-

ized multiscale finite element method (GMsFEM) in solving the mixed framework of

the flow problem in heterogeneous media [10]. The first method is based on a local

error indicator. We use this indicator to search for the regions, where more basis func-

tions are needed. This method will only add pre-computed basis functions, which are

computed in the offline stage so we call it an offline adaptive method. In the second

method, new basis functions are computed based on the previous solutions. We call it

an online adaptive method.

GMsFEM [7] is a generalization of the classical multiscale finite element method

[26]. In the classical method, one basis function per coarse edge is used to capture

the multiscale features. For the multiscale mixed finite element method, one may

see [1, 2, 4]. GMsFEM allows more basis functions per coarse edge to be used to take

into account the effects of non-separable scales. The main idea is to solve local spec-

tral problems for the selection of basis functions. The formation of basis functions in

GMsFEM can be divided into offline and online stages. In the offline stage, offline basis

functions are computed based on the multiscale features so that these functions can

be reused for any input parameters to solve the equation. Online functions are those

depending on the parameters. In [15], an adaptive algorithm is developed to enrich

the space by adding basis functions which are formed in the offline stage. In [14],

adaptive methods which involve the formation of new online basis functions based on

the previous solution are developed. These methods show significant acceleration in

the convergence rate of GMsFEM. There are also related methods developed for the

discontinuous Galerkin formulation in [11] and [13].

In the paper, we will focus on the mixed framework of the flow problem. The mixed

methods are important for many applications, such as flows in porous media, where

the mass conservation is essential. We developed two adaptive methods to enrich the

function space. One involves only offline basis functions while the other adds new

online basis functions that are constructed using special minimum energy snapshots.

We call them an offline and an online adaptive methods respectively. Two local spectral

problems are developed for constructing multiscale basis functions. Both of them can

be used in the online method, but only one can be used in the offline method. We

propose error indicators which are based on the L2 and the H(div) norms of the local

residual. These error indicators can be used to approximate the error of the solution.

From [10], we know that the error between the GMsFEM solution and the fine grid

solution involves two parts: one due to the selection of the basis functions and the

other due to the discretization of the source function. In this paper, we will assume

the error due to the discretization of the source function is small and consider only the
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