
Some Elementary Results Related to the Cauchy’s Mean
Value Theorem

German Lozada-Cruz
e-mail: german.lozada@unesp.br

Departamento de Matemática
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Abstract

In this note we prove some elementary results of Cauchy’s mean value theorem. The main
tools employed to get these are auxiliary functions.

1 Introduction
We know that mean value theorems are important tools in real analysis. The first one that we learn

is the famous Lagrange’s mean value theorem ([2, Theorem 2.3] or [10, Theorem 4.12] e.g.) and it
asserts that a function f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), then there
exists η ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(η). (1)

This mean value theorem is used to solve a great variety of problems in optimization, economics, etc.
If f(a) = f(b) in (1), then the Lagrange’s mean value theorem reduces to Rolle’s theorem ([10,

Theorem 4.11]). The equivalence between Rolle’s and Lagrange’s mean value theorems has been
proved for example in [11, Theorem B].

In 1958, T. M. Flett [1] proved a variant of Lagrange’s mean value theorem. Other authors ob-
tained variants of Lagrange’s mean value theorem (see [14] and [4] for example).

In 1977, R. E. Myers [9] proved that there are nine possible quotients in (1) having one of the
values f(b) − f(a), f(η) − f(a), f(b) − f(η) for numerators, and one of b − a, η − a, b − η for
denominators.

The second mean value theorem is the Cauchy’s mean value theorem ([10, Theorem 4.14], [12,
Theorem 2.17]), which is a generalization of the Lagrange’s mean value theorem. It establishes the
relationship between the derivatives of two functions and the variation of these functions on a finite
interval.
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Theorem 1 (Cauchy’s Mean Value Theorem) Let f, g : [a, b] → R be continuous functions on
[a, b], differentiable on (a, b) and g′(x) 6= 0 for all x ∈ (a, b). Then, there exists η ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(η)

g′(η)
. (2)

For a geometric interpretation of Cauchy’s mean value theorem consider the curve γ : [a, b] →
R2 given by γ(t) = (f(t), g(t)). According to the Cauchy’s mean value theorem, there is a point
C = (f(η), g(η)) on the curve γ where the tangent is parallel to the chord joining the points A =
(f(a), g(a)) and B = (f(b), g(b)) of the curve (see Figure 1).

Figure 1: Geometric interpretation of Cauchy’s mean value theorem

W.-C. Yang used technological tools and gave a geometric interpretation of Cauchy’s mean value
theorem (see [15]).

In 2000, E. Wachnicki (see [16, Theorem 1.3]) proved the following variant of Cauchy’s mean
value theorem.

Theorem 2 (Wachnicki’s Theorem) Let f, g : [a, b] → R be differentiable functions on [a, b]. Sup-
pose that g′(x) 6= 0 for all x ∈ [a, b] and

f ′(a)

g′(a)
=
f ′(b)

g′(b)
. (3)

Then, there exists η ∈ (a, b) such that

f(η)− f(a)

g(η)− g(a)
=
f ′(η)

g′(η)
. (4)

Remark 3 If g(x) = x, then Wachnicki’s theorem reduces to Flett’s theorem.
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