Some Notes on k-minimality

Azam Etemad Dehkordy∗

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran.

Received April 4, 2017; Accepted September 13, 2018

Abstract. The concept of minimality is generalized in different ways, one of which is the definition of k-minimality. In this paper k-minimality is studied for minimal hypersurfaces of a Euclidean space under different conditions on the number of principal curvatures. We will also give a counterexample to L_k-conjecture.

AMS subject classifications: 53D12, 53C40, 53C42.

Key words: k-minimal, minimal hypersurface, L_k-conjecture.

1 Introduction

Let $x : M \to \mathbb{E}^m$ be an isometric immersion from a Riemannian n-manifold into a Euclidean space. Denote the Laplacian, the position vector and the mean curvature vector field of M, respectively, by Δ, x and \vec{H}. Then, M is called a biharmonic submanifold if $\Delta \vec{H} = 0$. Beltrami’s formula, $\Delta x = -n \vec{H}$, implies that every minimal submanifold of \mathbb{E}^m is a biharmonic submanifold.

Chen initiated the study of biharmonic submanifolds in the mid 1980s [4]. Then, Chen and other authors proved that, in specific cases, a biharmonic submanifold is a minimal submanifold [4, 5, 7] and Chen introduced his famous conjecture [3]. This conjecture remains open, although the study thereof is active nowadays. Among other results, it is proved in [6] that Chen’s Conjecture is true for biharmonic hypersurfaces with three distinct principal curvatures in \mathbb{E}^m. Furthermore, under a generic condition, Koiso and Urakawa [8] gave affirmative answer to Chen conjecture.

The linearized operator of $(k+1)$-th mean curvature of a hypersurface, i.e. H_{k+1}, is the L_k operator. The L_k operator is a natural generalization of Laplace operator for $k=1, \ldots, n$ [9, 10]. Let $x : M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from a connected orientable Riemannian hypersurface into the Euclidean space \mathbb{E}^{n+1}. It is proved that [1]

$$L_k x = (k+1) \binom{n}{k+1} H_{k+1} N,$$

∗Corresponding author. Email address: ae110mat@cc.iut.ac.ir (A. Etemad)
where N is the unit normal vector field and $k=0,\ldots,n-1$. The L_k-conjecture is as follows.

L_k-Conjecture. Every L_k-biharmonic hypersurface, namely a Euclidean hypersurface $x: M^n \to \mathbb{E}^{n+1}$ satisfying the condition $L_k^2 x = 0$ for some $k=0,\ldots,n-1$, has zero $(k+1)$-th mean curvature.

A manifold with zero $(k+1)$-th mean curvature is called k-minimal for $k=0,\ldots,n-1$. In 2015, Aminian and Kashani [2] proved the L_k-conjecture for Euclidean hypersurfaces with at most two principal curvatures. They also proved the L_k-conjecture for L_k-finite type hypersurfaces.

In this paper, we prove that the L_1-conjecture is not true for a connected minimal hypersurface of a Euclidean space with arbitrary number of principal curvatures.

2 Preliminaries

In this section, we recall some standard definitions and results from Riemannian geometry. Let $n \geq 2$ and suppose $x: M^n \to \mathbb{E}^{n+1}$ is an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1}.

Let A be the shape operator of this immersion and $\lambda_1,\ldots,\lambda_n$ be the eigenvalues of this self-adjoint operator. The mean curvature of M is given by

$$nH = \text{trace } A = \lambda_1. \ldots \lambda_n.$$

The k-th mean curvature of M is also defined by

$$\binom{n}{k} H_k = s_k,$$

where $s_0 = 1$ and $s_k = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1} \ldots \lambda_{i_k}$ for $k = 1,\ldots,n$. It is obvious that $H_1 = H$ and $S = n(n-1)H_2$, where S is the scalar curvature of M.

The Newton transformations $P_k: C^\infty(TM^n) \to C^\infty(TM^n)$ are defined inductively by $P_0 = I$ and

$$P_k = s_k I - A \circ P_{k-1}, \quad 1 \leq k \leq n.$$

Therefore,

$$P_k = \sum_{i=0}^{k} (-1)^i s_{k-i} A^i, \quad 1 \leq k \leq n.$$

Thus the Cayley-Hamilton theorem implies that $P_n = 0$. It is well known that each P_k is a self-adjoint linear operator which commutes with A. For $k = 0, \ldots, n$, the second
order linear differential operator $L_k: C^\infty(M^n) \to C^\infty(M^n)$, as a natural generalization of the Laplace operator on Euclidean hypersurface M, is defined by

$$L_k f = \text{trace}(P_k \circ \nabla^2 f),$$

where $\nabla^2 f$ is metrically equivalent to the Hessian of f and is defined by

$$\langle (\nabla^2 f)X, Y \rangle = \langle \nabla X(\nabla f), Y \rangle$$

for all vector fields $X, Y \in C^\infty(TM^n)$. Here ∇f is the gradient vector field of f.

When $k = 0$, $L_0 = \Delta$. In this case, we have also $A \circ P_0 = A$ and $L_0^2 x = 0$, which means, M^n is a biharmonic hypersurface.

3 1-minimality and counterexample

In this section, we first consider the minimal hypersurfaces of \mathbb{E}^n with three distinct principal curvatures.

Theorem 3.1. Let $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1}. If M^n is a minimal hypersurface with three distinct principal curvatures, then M^n cannot be 1-minimal.

Proof. Let $\lambda_1 = ... = \lambda_p = \alpha$, $\lambda_{p+1} = ... = \lambda_{p+q} = \beta$, $\lambda_{p+q+1} = ... = \lambda_n = \gamma$ be principal curvatures of M^n, for $1 \leq p \leq n-2$ and $1 \leq q \leq n-2$. Then we have

$$s_2 = \frac{1}{2} p(p-1) \alpha^2 + \frac{1}{2} q(q-1) \beta^2 + \frac{1}{2} (n-(p+q))(n-(p+q)-1) \gamma^2 + pq \alpha \beta$$

$$+ (n-(p+q))(p \alpha + q \beta) \gamma.$$

The minimality of M^n yields

$$\gamma = -\frac{(p \alpha + q \beta)}{n - (p + q)}.$$

So we have

$$s_2 = -\frac{1}{2(n-(p+q))}(p \alpha + q \beta)^2 - \frac{1}{2}(p \alpha^2 + q \beta^2). \quad (3.1)$$

Now if M^n is 1-minimal, then (3.1) implies that

$$(p \alpha + q \beta)^2 = -(n-(p+q))(p \alpha^2 + q \beta^2).$$

This concludes that $\alpha = \beta = \gamma = 0$, which contradicts the assumption. \(\square\)

Theorem 3.1 can be generalized to an arbitrary number of principal curvatures as in the following theorem,
Theorem 3.2. Let \(x : M^n \rightarrow \mathbb{E}^{n+1} \) be an isometric immersion from an \(n \)-dimensional connected Riemannian manifold \(M^n \) into Euclidean space \(\mathbb{E}^{n+1} \). If \(M^n \) is a minimal hypersurface with \(k \), \(k > 1 \), distinct principal curvatures, then \(M^n \) cannot be 1-minimal.

Proof. Let \(\lambda_1 = \ldots = \lambda_{p_1} = \alpha_1, \lambda_{p_1+1} = \ldots = \lambda_{p_1+p_2} = \alpha_2, \ldots, \lambda_{\Sigma_{i=1}^{k-1} p_i + 1} = \ldots = \lambda_n = \alpha_k \) be principal curvatures of \(M^n \), for \(1 \leq p_i \leq n - (k - 1), 1 < i < k - 1 \), and let \(p_k = n - \Sigma_{i=1}^{k-1} p_i \). Therefor we have

\[
 s_2 = \frac{1}{2} \sum_{i=1}^{k-1} p_i (p_i - 1) \alpha_i^2 + \frac{1}{2} p_k (p_k - 1) \alpha_k^2 + \sum_{1 \leq i < j \leq k-1} p_i p_j \alpha_i \alpha_j + p_k (\sum_{i=1}^{k-1} p_i \alpha_i) \alpha_k.
\]

We obtain from minimality of \(M^n \),

\[
 \alpha_k = -\sum_{i=1}^{k-1} \frac{p_i \alpha_i}{p_k},
\]

so we have

\[
 s_2 = -\frac{1}{2p_k} \left(\sum_{i=1}^{k-1} p_i \alpha_i \right)^2 - \frac{1}{2} \left(\sum_{i=1}^{k-1} p_i \alpha_i^2 \right). \tag{3.2}
\]

Now if \(M^n \) is 1-minimal, then (3.2) implies that

\[
 (\sum_{i=1}^{k-1} p_i \alpha_i)^2 = -p_k \sum_{i=1}^{k-1} p_i \alpha_i^2.
\]

This concludes that \(\alpha_i = 0 \), for \(i = 1, \ldots, k \), which contradicts the assumption. \(\square \)

An immediate corollary for this section is stated as follows.

Corollary 3.1. Let \(x : M^n \rightarrow \mathbb{E}^{n+1} \) be an isometric immersion from an \(n \)-dimensional connected Riemannian manifold \(M^n \) into Euclidean space \(\mathbb{E}^{n+1} \). If \(M^n \) is a minimal hypersurface, then \(M^n \) is 1-minimal if and only if \(M^n \) has exactly one vanishing principal curvature.

We conclude this section with a Counterexample for \(L_k \)-Conjecture.

Counterexample. By Corollary 3.1, a connected minimal \(L_1 \)-biharmonic hypersurface of \(\mathbb{E}^{n+1} \) with at least one non zero principal curvature cannot be 1-minimal.

4 2-minimality

In this section we study the property of 2-minimality for some hypersurfaces of Euclidean spaces in the specific cases.
Theorem 4.1. Let n be odd and $x: M^n \rightarrow \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1}. If M^n is a minimal hypersurface with two distinct principal curvatures, then M^n cannot be 2-minimal.

Proof. According to the calculation on the page 4 of [2], we have

$$s_3 = \sum_{i=0}^{n} \binom{m}{i} \left(\frac{n-m}{3-i} \right) \alpha^i \beta^{3-i}.$$

From the minimality of M^n, it follows that $\alpha = -\frac{n-m}{m} \beta$. Therefore

$$s_3 = \sum_{i=0}^{n} \binom{m}{i} \left(\frac{n-m}{3-i} \right) (-1)^i \left(\frac{n-m}{m} \right)^i \beta^3. \quad (4.1)$$

Now from (4.1), if M^n is 2-minimal, then $\alpha = \beta = 0$, which yields a contradiction. \qed

In Theorem 4.1, if n is even, then we have another theorem.

Theorem 4.2. Let n be even and $x: M^n \rightarrow \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1}. Assume also that M^n is a minimal hypersurface with two distinct principal curvatures. If the multiplicity of principal curvatures are equal, then M^n is 2-minimal. Otherwise, M^n cannot be 2-minimal.

Proof. We have

$$\sum_{i=0}^{n} \binom{m}{i} \left(\frac{n-m}{3-i} \right) (-1)^i = 0,$$

thus if the multiplicity of two principal curvatures are equal, then $s_3 = 0$, by (4.1). This means that, independent of β, M^n is 2-minimal. In other cases, the proof is similar to the proof of Theorem 4.1. \qed

For three distinct principal curvatures in a spacial case, we have the following theorem.

Theorem 4.3. Let $n \geq 5$ and $x: M^n \rightarrow \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1}. If M^n is a minimal hypersurface with three distinct principal curvatures of multiplicity $\{ n-2, 1, 1 \}$, then M^n is 2-minimal if and only if the principal curvature of multiplicity $n-2$ is vanish.

Proof. Let α, β, γ be principal curvatures of M^n with multiplicity $n-2, 1, 1$ respectively. According to definition, we have

$$s_3 = \frac{(n-2)!}{3!(n-3)!} \alpha^3 + \frac{(n-2)(n-3)}{2} \alpha^2 (\beta + \gamma) + (n-2) \alpha \beta \gamma. \quad (4.2)$$
Since M^n is minimal we have $\alpha = -\frac{\beta + \gamma}{n-2}$. So by substitution in (4.2) we get,

$$s_3 = T(\beta + \gamma)^3 - (\beta + \gamma)\beta\gamma = (\beta + \gamma)(T\beta^2 + T\gamma^2 + (2T-1)\beta\gamma),$$

(4.3)

where $T = \frac{n^2 - 4n + 3}{3(n-2)^2}$. Because of non-vanishing of the second parenthesis in (4.3) for $n \geq 5$, if M^n is 2-minimal, we conclude that $\beta = -\gamma$ and $\alpha = 0$. The converse is obvious from (4.2).

A direct computation shows that the result of Theorem 4.3 is also true for $n = 3$ and $n = 4$.

The last theorem is about 2-minimality property for minimal hypersurfaces with three distinct principal curvatures, when the dimension of hypersurface is a multiple of three.

Theorem 4.4. Let $n = 3m$, for some $m \geq 3$ and $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1}. Assume also that M^n is a minimal hypersurface with three principal curvatures of equal multiplicity. Then M^n is 2-minimal if at least one of the principal curvatures is zero.

Proof. Let α, β, γ be principal curvatures of M^n. By definition of s_3, we have,

$$s_3 = \left(\begin{array}{c} m \\ 3 \end{array} \right) (\alpha^3 + \beta^3 + \gamma^3) + m \left(\begin{array}{c} m \\ 2 \end{array} \right) (\alpha^2 \beta + \alpha \beta^2 + \alpha^2 \gamma + \alpha \gamma^2 + \beta^2 \gamma + \beta \gamma^2) + m^3 \alpha \beta \gamma.$$

Because of minimality of M^n, we have also $\alpha = -(\beta + \gamma)$. Therefore we get

$$s_3 = -m(\beta + \gamma)\beta\gamma.$$

It is concluded that if M^n is 2-minimal, then one of the principal curvatures is zero.

In Theorem 4.4, for the case $m = 2$, 2-minimality of M^n is a direct result of its minimality.

References

