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Abstract. We first get an existence and uniqueness result for a nonlinear eigenvalue
problem. Then, we establish the constant rank theorem for the problem and use it to
get a convexity property of the solution.
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1 Introduction

Let Ω⊂R3 be a strictly convex bounded domain in R3 with smooth boundary. We con-
sider the following eigenvalue problem{

σ2(Wij(D2u))=λ(−u)2 in Ω,
u=0 on ∂Ω,

(1.1)

where D2u=(uij) is the hessian matrix of u, (Wij(D2u)) is a symmetric matrix defined as

(Wij)=

 u11+u22 u32 −u31
u23 u11+u33 u21
−u13 u12 u22+u33

 (1.2)

and σ2 is the 2-nd hessian operator (i.e. σ2(S)= the sum of the 2-principal minors of S
for any 3×3 symmetric matrix S). We first prove an existence and uniqueness result for
(1.1). Then we get some convexity result for the solution of it.

The eigenvalue problem played an important role in partial differential equations
and had been studied by many authors (see, e.g., [21, 24, 25, 33]). Lions [25] first got
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the existence and uniqueness result for the eigenvalue problem of Monge-Ampère equa-
tion. Later on, Wang [33] (and Geng-Yu-Qu [12]) generalized this result to the k-hessian
equations. In this paper, we get similar results for (1.1). Another important problem
in PDE is the convexity problem, which connects the geometric properties to geomet-
ric inequalities. One powerful tool to study the convexity is the constant rank theorem.
Caffarelli-Friedman [6] proved a constant rank theorem for convex solutions of quasi-
linear elliptic equations in R2. Meanwhile, a similar result was discovered by Yau [30].
Korevaar-Lewis [23] generalized their results to Rn. Later on, Caffarelli-Guan-Ma [8] and
Bian-Guan [4] established the constant rank theorem for a class of fully nonlinear equa-
tions. Related to our problems, Liu-Ma-Xu [26] established the constant rank theorem for
the eigenvalue problem related to k−Hessian equations for k= 2 in dimension n= 3. In
this paper, we would get a convexity result for (1.1) similar to [26].

Our another motivation to study (1.1) comes from the concept of k−convex solutions
introduced by Harvey-Lawson [18] who introduced some general convexity on the so-
lutions of the nonlinear elliptic Dirichlet problem. In their definition, a C2 function u is
said to be k−convex if the sum of any k eigenvalues of its hessian matrix is nonnegative.
Recently, Han-Ma-Wu [16], Tosatti-Weinkove [31] studied a similar ”convexity”-the n−1
plurisubharmonicity for C2 functions defined on Ω⊂Cn (i.e. the sum of any n−1 eigen-
values of the complex hessian ( ∂2u

∂zi∂zj
) is positive) and [31] used it to study the form-type

Calabi-Yau equation (see [10, 11]). The k−convexity is related to (1.1) in the sense that if
we note the eigenvalues of D2u by λi, (i=1,2,3). Then, by an orthogonal transformation, it
is easy to know that the three eigenvalues of (Wij(D2u)) are λ1+λ2,λ1+λ3,λ2+λ3. So, u is
2−convex if and only if (Wij(D2u)) is positive semi-definite. For our purpose here, we do
not need (Wij(D2u)) to be positive semi-definite. Instead, we only need (Wij(D2u))∈Γ2
(the definition of Γ2 will be given below) for the operator F(D2u) = σ2(Wij(D2u)) to be
elliptic on u.

We see that the operator F(D2u) = σ2(Wij(D2u)) is a combination of the 2−hessian
operator σ2 and a linear one. In our proof of the theorems, we will use the elementary
properties of the hessian operator repeatedly. So, let us state some preliminary knowl-
edge that will be used below.

For 1≤ k≤n, let σk be the k−th elementary symmetric function, i.e.

σk(λ)= ∑
1≤i1<i2<···<ik≤n

λi1 λi2 ···λik , ∀ λ=(λ1, . . .,λn)∈Rn. (1.3)

Let Sn be the set of all n×n real symmetric matrix. For S∈Sn, let λ(S)=(λ1,λ2, . . .,λn)
be the eigenvalues of S. We use the same notion σk to define the k−hessian operator as

σk(S)=σk(λ(S)). (1.4)

We denote Γk ={λ∈Rn|σi(λ)>0, i=1,.. .,k}, which is an open convex cone in Rn. We
also denote Γk ={S∈Sn|λ(S)∈Γk}={S∈Sn|σi(S)>0, i=1,.. .,k} if there is no confusion.
It is well known that the k−hessian operator σk is elliptic with respect to S in Γk and


