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Abstract

In this paper, we analyze and provide numerical experiments for a moving finite ele-
ment method applied to convection-dominated, time-dependent partial differential equa-
tions. We follow a method of lines approach and utilize an underlying tensor-product
finite element space that permits the mesh to evolve continuously in time and undergo
discontinuous reconfigurations at discrete time steps. We employ the TR-BDF2 method as
the time integrator for piecewise quadratic tensor-product spaces, and provide an almost
symmetric error estimate for the procedure. Our numerical results validate the efficacy of
these moving finite elements.
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1. Introduction

The method of lines is an efficient approach for computing numerical solutions to parabolic
partial differential equations by converting these problems into systems of ordinary differential
equations. This provides a great deal of flexibility in how the solution may be computed, as the
time discretization then becomes independent of the spatial discretization. For finite element
methods, the spatial dimensions are discretized in the usual way, leading to a semi-discrete
problem that is subsequently propagated in time by numerical integration.

When dealing with convection-dominated problems, the spatial discretization can be chosen
to evolve continuously in time, which allows the finite element mesh to continuously track mov-
ing structures in the solution such as steep sweeping fronts [1-3]. These moving finite elements
can lead to remarkably improved stability in computing a solution, with respect to the length
of permissible time steps [4,5]. While the literature of moving mesh finite element methods is
expanding rapidly, rigorous error analysis of these methods is still relatively unknown.

In [6,7], tensor-product finite element spaces compatible with a method of lines discretization
were introduced that allowed these moving finite element solutions to be studied in a space-time
finite element framework. As a result, these papers established symmetric error estimates for
these finite element solutions of arbitrary order when the numerical time integrator belongs to
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a particular class of fully implicit collocation methods. The first symmetric error estimate is
proven in [8] for semi-discrete moving finite elements,

lu—unl < C inf Jlu— x|, (L.1)
XEVh

using a mesh-dependent energy semi-norm, || - ||, where w is the true solution, uy is the finite
element solution, and V} is a (tensor-product) moving finite element space [6,7]. Other error
analyses include [9] that bound the error in alternative energy norms, [10] for mixed finite
element methods, and [11] for moving finite difference schemes.

In this paper, we consider the effects of employing a time integrator that does not belong to
previous classes of collocation methods. This is a valuable modification because the collocation
methods in past works are fully implicit and couple all intermediate stages of each time step,
significantly increasing the computational complexity when using higher order quadrature. We
consider the second-order and diagonally-implicit time integrator, TR-BDF2, introduced in
[12,13], and using piecewise quadratic tensor-product finite element spaces to discretize the
problem. This time integration scheme is known for its favorable stability properties [14, 15],
which motivates its study in the present context as moving finite element discretizations often
lead to stiff systems of ODEs [4,5]. In Section 3, we prove an error estimate like (1.1) with an
additional term corresponding to the truncation error of TR-BDF2.

This work largely builds on the analyses in [6,16], where parts of the preliminary analysis
are given in more detail. This paper is organized as follows: in Section 2, we describe the model
equation, the piecewise quadratic tensor-product finite element space, and some preliminary re-
sults. In Section 3, a space-time moving finite element method using TR-BDF2 time integration
is proposed and an error estimate for the finite element solution is proven. We note that the
proposed scheme is a simple discretization resulting directly from a finite element discretization
in space and the method of lines to discretize the time variable; many moving mesh methods
fit into the framework of our analysis without modification, as discussed in section 3. Section
4 describes and reports some numerical experiments that validate the efficacy of these moving
finite element methods.

2. Preliminary Results

The model problem used in this error analysis is the linear convection-diffusion-reaction
equation. The spatial domain, ©, is assumed to be a simply connected set in R%, where d = 1, 2,
or 3, with boundary 9. The time domain is a finite interval, (0, T'], and the space-time domain
is given by F = Q x (0,T].

Let a, b, ¢, and f be smooth and bounded functions defined on F such that there exist
constants @ > 0 and ¢ > 0 with @ > @ and ¢ > ¢ on 2, and let g be integrable on 92. Let ug be
a given initial condition for the solution on F and let n denote the outward unit normal vector
to the boundary 9. The solution to the differential equation, denoted by w, is the function
that satisfies

ug — V- (aVu)+b-Vu+cu=f, in F, (2.1)
aVu-n=g, on 99 x (0,7, (2.2)

u(z,0) = up(x), for = in Q.
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When the convection term, b in (2.1), is large relative to the other coefficients, steep shock
layers may develop in the solution that propagate through the spatial domain. Basic finite
element discretizations consequently require short time steps to maintain accuracy of the com-
puted solution at this moving front, or a moving mesh can be employed, allowing for more
flexibility in the length of the time step. Moving finite elements offset the convection velocity
in a similar manner to the method of characteristics.

We assume a time-dependent parametrization of the spatial domain, z(t), where z(-,t) :
) — Q is a continuous bijective map for fixed ¢ in (0, T] and (-, t) is continuous on Q. We also
require x;(y, -) to be piecewise continuous on (0,7] for each y € Q. We define the space-time
derivative as

ur(z(t),t) = %u(w(t),t) = u(x(t),t) + x - Veu(x(t),1).

We refer to this as the characteristic derivative of u.
The weak form of the problem is: find u with u(-,t) € H1(Q) and (-, t) € L2() such that
for all y in HY(Q) and 0 <t < T,

(ur (1), x) + Ar(tiu, x) = (F( 1), x) + (9(-, 1), x), (2:3)

and when t =0

(u(-,0),x) = (uo,x)-

The inner-products are given by

F0)= [ f@x@ de  and  (g.x) = / g()x(s) ds,
Q o0

and define the time-dependent bilinear form

A (tu, x) = /Q a(x, t)Vu(z,t) - Vx(z) + (b(z,t) — 2¢(t)) - Vu(z,t) x(x)

+ c(z, t)u(x, t)x(z) dz.

Notice that parameterizing the spatial variable so that z; =~ b leads to a formulation where the
convection velocity is much less prominent, as it is “absorbed” into the characteristic derivative.

The finite element space we use to discretize the differential equation is a tensor-product of
a discontinuous piecewise quadratic finite elements in time with continuous piecewise quadratic
finite elements in space.

Let 0 < t; < -++ < t, = T form a strict ordered partition of the time domain and define
At; =t; —t;—1. For 1 < i < m, let {z(t)}; represent the vertices of a triangulation of the
domain at time ¢, where 0 < k < NN;, and we assume that |z (t) —z;(¢)| > Az throughout each
time partition for some minimum mesh size Az > 0 and j # k. The vertices of the mesh are
permitted to move along quadratic trajectories throughout each time partition—that is, each
node z(t) is a quadratic polynomial for ¢;_1 < t < ¢;, though discontinuous reconfigurations
of the mesh are permitted at the beginning of each partition. These discontinuous changes in
the mesh provide flexibility for discretely adding and removing degrees of freedom, as well as
keeping the nodes in the mesh from colliding and tangling [17].

The reference element for this finite element space is the Cartesian product of the unit
interval (d = 1), triangle (d = 2), or tetrahedron (d = 3) for space with the unit interval
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Fig. 2.1. A space-time mesh partition of a single dimension in space. The filled circles represent the
space-time “hat” basis nodes; hollow circles correspond to “bump” function nodes.

reference element for the time domain. Let e be an element in the mesh with vertices given by
zk(t) at time ¢, where k = 0,1,...,d and t;_; <t <t;. Then, the isoparametric mapping from
the reference element to e is given by

t=ti_q1 + LA,
z(t) = Je(t)2 + zo(t),

for 0 < £ <1 and & in the spatial reference element, where z(t) is affine in space and quadratic
in time. Notice that the time variable is space invariant, but the spatial variable does in fact
depend on t. The d x d spatial Jacobian matrix, J.(t), determines the shape and size of the
element e at time slice ¢. Since the determinant of the spatial Jacobian is proportional to the
size of the element, we require |det J.(t)| > 0 for all ¢ to ensure a non-degenerating mesh.

Since we are using a tensor-product space-time discretization, the degrees of freedom of
the finite element space are distributed in time slices. Namely, for fixed time ¢, the degrees
of freedom {xj(t)}r define a standard finite element space of continuous piecewise-quadratic
polynomials on €, which we denote by V,(¢). This is an important property that permits us
to discretize the differential equation using the method of lines. We emphasize that the finite
element functions are piecewise quadratic polynomials along the node trajectories, x(t), rather
than in the time direction as with standard tensor-product discretizations. This ensures that
the characteristic derivative of a finite element function, ¢, is continuous within each time
partition and satisfies ¢, (t) € V(t). We denote the tensor-product finite element space on the
space-time domain by V,. More detailed descriptions of these tensor product finite element
spaces can be found in [6,16].

Much of the literature regarding moving mesh methods focus on finding a suitable mesh
motion for a given problem. This paper intends to provide an error analysis and does not
seek to determine the “best” scheme for moving the mesh, though we discuss the relevance of
our error analysis to some well-studied techniques for finding the mesh motion, ¢, in the next
section.

For our moving finite element method, it is convenient to define the finite element functions
at the mesh discontinuity by an Lo-projection. For ¢ in V,, we represent the limiting values
near the discontinuities as ¢(¢;+) = lims_.g+ ¢(t +0) and ¢(t;-) = lims_,o+ ¢(t — §). We require

(Qb(ti*)v X) = (¢(ti* ), X)

for all x in Vy,(t;+), ¢ = 1,...,m. To uniquely determine the finite element functions, we take
o(t;) = ¢(t;-) at the discontinuities.
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Multi-index notation is used to represent spatial derivatives, but time and characteristic
derivatives does not follow this convention. The H*(Q) semi-norm and norm follow conventional
notation and we write

1/2 1/2
e = | D (Dav, Dav) and [olr = { Y (Dav,Dav)

o=k lal<k

Following Dupont [8], a mesh-dependent semi-norm is defined that allows us to prove our error

estimate,
|(v, )]
[vl(—1vn@) = sup ——==.
xever Ixlh
xX7#0

We also use the infinity norm, |v]e = maxgeq |v(z)].

We now introduce a space-time shape regularity constraint for the moving finite element
mesh that controls the time evolution of the spatial elements and prevents degenerate elements.
Fix e to be an element in the time partition with ¢;_; <t < t;. Then, the Jacobian matrix at
time t can be represented as

Te(t) = (Re(t) + AtiHe () Te(tio1+), (2.4)

for some orthogonal rotation matrix, R.(t), and evolution matrix, H.(t). The matrix R, +
At;H,. is constrained to have quadratic polynomial entries throughout the time partition. (We
remark that this constraint on the node trajectories does not enter our error analysis direct-
ly, though the use of discrete time integration implicitly approximates these trajectories as
quadratic polynomials; making this constraint explicit disallows any unexpected errors arising
from poor shape regularity of the moving mesh.) The matrix R.(t) describes the element rota-
tion in time, and the evolution matrix describes the deformation of the shape of the element.
Since the trajectories of the spatial nodes are restricted to quadratic polynomial paths, elements
cannot rotate perfectly in time and more of a twisting action is observed; the evolution matrix
necessarily reflects these deformations. If an element is merely translated in time, without
rotation or changing shape, then the Jacobian matrix, J.(t), remains unchanged.

Let p(-) represent the spectral norm for d x d matrices. It is assumed that the evolution
matrix, H., has a uniformly bounded spectral radius throughout the time step; namely, there
exists some positive constant p that does not depend on e or ¢ such that

p(M.(1)) < . (2.5)

This bounds the relative change in shape and size of the element over time. Many schemes for
moving the mesh implicitly satisfy (2.5), for example the algorithms in [1,4,5,18,19]; it is noted
that such a bound tends to permits larger time steps in [5]. Assuming a non-degenerate finite
element space and the space-time shape regularity bound (2.5), if we have At; < 1/2¢, 4, with
Cua = [(1+ pAt)? —1]/At; = pd + O(At;), it follows that

P(Te(®) T (tioat)) = p(Re(t) + AtH.(1)) < 1+ pAt;, (2.6)

|det Je(t)]

1—-¢CiAt; < ————
wAZT = det T (f_1+ )|

<14 &yt (2.7)

Let ¢ be a function in the finite element space, V}(t), for some fixed ¢ in the time partition
(ti—1,t;]. We shift ¢ onto the mesh of Vj(t;_1+), at the beginning of the time partition by
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replacing the basis functions of V() with their corresponding basis functions in Vj(t;_1+),
while preserving the basis coefficients. Formally, this operation can be defined by an element-
wise composition of the inverse of the affine spatial isoparametric maps for the elements in the
mesh at time ¢, with the affine spatial isoparametric maps for the elements at the beginning
of the time step. The following lemma, proven in [16], establishes the relationship between the
space-time shape regularity constraint (2.5) and the continuity of this shift operation.

Lemma 2.1 (Shift lemma). Let ¢, x € Vi(t) and b, % € Vi (ti_1+) represent a pair of finite
element functions and their shifts, respectively, on a non-degenerate time partition of the mesh
that satisfies (2.5) on each element. If At; < 1/2¢, 4, as defined in (2.7), then there exists a
positive constant, C,, 4, such that

llells = 1915] < Cuartdl5, (2:8)

el? = 1913 < Cuarrt 4]} (2.9)

We now present a local Gronwall lemma that is used to bound the maximum error of the
finite element solution over each time partition. The proof for this lemma is given in [16].

Lemma 2.2 (Local Gronwall inequality). Suppose there are two distinct times on each
time partition, t;—1 < t;1 < t; 2 = t;, when the mesh satisfies the regularity constraint (2.5) and
that there exists a positive constant k such that

16— 2t|oo < K. (2.10)

If At; < 1/2¢,.q as defined in (2.7), and functions ¢ € Vy, and n € H'(Q), with n, € L2(Q),
satisfy
(¢T(ti,j)7X) + -’47 (¢(ti7j)7X) = (nT(ti,j)7X) + -AT (n(ti,j)a X) (2'11)

for all x in Vy(t; ;) at time each collocation node j = 1,2, then, there exists a constant such
that

2
max o(t)y < € § ot g + > A (I (DI 1, e + I3 + 16t E)
J:

where C' depends on k, i, d,p, and the differential equation.

Another discrete Gronwall lemma is used to aggregate the spatial error bounds from each
time partition over the entire time domain. This result is proved in [20].

Lemma 2.3 (Discrete Gronwall inequality). Let At; > 0 and o, v;,0;,q; > 0, for 1 <i <
m, with 6;At; < % and 6 = max; 0;. Then, if

At +7v < a; +0i(qi +gi1),

there exists a positive constant, Cy ~ 9T, such that

o 3ot < g+ Yoo |

i=1 i=1
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3. A Space-time Moving Finite Element Method with TR-BDF2

To achieve second-order accuracy for the finite element solution, we employ the two-stage,
diagonally-implicit time integration scheme, TR-BDF2. Since this scheme is diagonally implicit,
significant savings are realized when applied to parabolic differential equations. TR-BDF2 was
proposed by Bank, et al. in [12,13] and has been analyzed in several other papers for its
efficiency and stability [14,15]. TR-BDF2 refers to a family of time stepping methods that is
parametrized by the location of an intermediate collocation node. For this method, we define
the collocation nodes on the reference interval to be

tO:O, £1:€/2, and 2?2:1,

where 0 < € < 1 is a free parameter and this fixes the basis nodes on the reference interval to
be
40:07 41:57 and C2:17

so that ¢, is the midpoint of the first two basis nodes. The Runge-Kutta coefficients correspond
to integrating the computed solution a step of length e At; by the trapezoid rule, then completing
the time step by a second-order backward difference. Let

Gij =tic1 + CAjAtia zi; =x(Gy), and tip =ti_1 + AL

for j =0,1,2 and k = 1,2. For any function u defined on the domain Q x (0,7, define

1 1
urr (x(tin), i) = 5“(301‘,1,@',1) + §U($i,o,@,o)7

u(x(ti>2)7 ti,2) = u(xi,Qu Ci,2)u

where the values of u are sampled along the characteristic trajectories of the finite element
mesh. The coefficients for the time derivative are determined by the interpolating quadratic
Lagrange polynomials along the characteristic trajectories and computing the derivative:

u(zin, Gia) — w(@i0,Gio)
€Ati ’

e(2 = e)u(wia, G2) — ulzin, Gin) + (1 —e)*u(wio, i)
5(1 — E)Atl

Oru(z(tin),tin) =

8Tu(x(ti,2), ti)g) = .
The fact that urr(t;1) and 0;u(t;,1) do not depend on u(t; 2) allows the solver to propagate the
solution one basis value at a time, which is why the TR-BDF2 scheme is so efficient, especially
for higher dimensional problems.

The optimal choice for the free parameter is known to be ¢ = 2 — /2, as it minimizes the
local truncation error [21]. The TR-BDF2 scheme is A-stable and L-stable [12,13,15], which is
critical property for this application as moving mesh methods typically lead to stiff systems of
equations [4,5].

In this section, we present the fully discretized PDE corresponding to (2.3), where moving
finite elements are used to discretize the problem and TR-BDF2 is used to integrate in time.
The solution to the fully discrete problem is characterized as the finite element function uy € Vy,
that satisfies

(Orun(tin), x1) + Ar (unrr(tin), x1) = (fti1), x1) + (9(ti1), x1) (3.1)
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for all x1 in Vu(t;,1) and

(Orun(tiz), x2) + Ar (un(tiz), x2) = (f(ti2), x2) + (9(ti2), x2), (3.2)

for all xo in Vj(t;2) with i =1,...,m.
The constraint at the mesh discontinuity,

(uh(ti+)ﬂ X) = (uh (ti* )7 X)7 (33)

must also hold for all x in Vj(t+), ¢ = 1,...,m — 1, to ensure that up, € V,. As a matter
of practical interest, we note that this requirement is stricter than necessary and that we only
require

lun(ti)lo < lun(ti-)lo (3.4)

for our error analysis. This can also be accomplished by conservative interpolation schemes
given in [22,23], which are more efficient and straightforward to implement compared to tradi-
tional Lo-projection—especially in higher dimensions. Another alternative is to use standard,
higher order interpolation for improved stability, though the bound (3.4) cannot be guaranteed
in general.

In contrast to the weak formulation (2.3), the finite element formulation only requires the
finite element solution to satisfy the constraints (3.1)—(3.2) at the collocation nodes. Tt is
important to recognize that (3.1)—(3.2) are equivalent to imposing a Galerkin orthogonali-
ty of the finite element solution at the collocation nodes; this requirement is satisfied (with
appropriate changes to reflect various choices of time integration) by many popular moving
mesh finite element methods applied to linear problems including their original formulation by
Miller and Miller [4,5], moving mesh methods using harmonic maps or equidistribution princi-
ples [18,19,24,25], and some Arbitrary Lagrangian-Eulerian methods [26-28]. Unfortunately,
gradient-weighted schemes [2,3] do not fall into this framework since they employ a weight func-
tion that has a nonlinear dependence on the computed solution, nor do some methods based
on conservation principles [29, 30].

Furthermore, the moving mesh finite element method considered here is general enough
to include adaptive finite elements [26-28]. By permitting discontinuities at the discrete time
steps, this analysis covers more specific mesh motion schemes, such as Euler-Lagrange schemes
where x; = b is a critical component of the method. One small difference in this analysis is
that any interpolation error in the mesh motion, x; — b, is not set to zero when imposing the
Galerkin orthogonalities (3.1)—(3.2); in most cases, this error is quite small and leads only to
minor differences in the computed solution. Moreover, this analysis covers methods where a
posteriori error estimates are prescribed to define how the mesh should change at each time
step. If only refinement and coarsening occurs at the discrete time-steps and interpolation
is used, then (3.4) should hold as well, unless coarsening the mesh where the solution may
undergo large changes in value, which is not typically the case in refinement methods based on
a posteriori error estimates.

We now prove an error estimate for wy, satisfying (3.1)—(3.3). The proof follows that of
Theorem 4.3 in [6] with some additional arguments that bound the error introduced by the
trapezoid approximation at the mid-step of each time partition. Due to the departure of this
method from a strict finite element framework, the symmetry of the error bound is broken
and an additional term proportional to the error of the trapezoid approximation is introduced.
Furthermore, for simplicity of the presented result, it is assumed that the diffusion coefficient,
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a, is a positive constant; an analogous theorem holds for general diffusivity and is presented in
full detail in [16].

One final aspect in which the error bound changes for TR-BDF2 integration is an increased
sensitivity to discontinuous changes in the mesh. Bank and Yserentant [31] proved the H!-
stability of Lo-projections onto finite element spaces with potentially nonuniform meshes. Using
this result, we assume |x(t;+)]1 < Culx(t:-)|1, for x in Vi,. As can be seen from [31], the
bounding constant, C%, is smaller when the mesh reconfiguration is more subtle at the mesh
discontinuities. This intuitively makes sense, since x(t;+) /= x(¢;-) in such cases.

The norm in which the error is bounded employs the trapezoid approximation at the mid-
step collocation node of each time partition. The semi-norm in which we bound the error of
the finite element solution with TR-BDF2 time integration is given by

m
2 2 2 2
el = max u(ts )1 4+ D At [10-u(ti )1, 100 + Tt
1<5<2 =1

o (G + 105t )1y, o,y + Tt I
Theorem 3.1. Suppose that Vy, is a finite element space with a non-degenerate mesh and let

e = 2/3. Furthermore, assume that the diffusion term, a, is a positive constant, that there exist
positive constants p and k such that at each collocation node

p(He) < (3.5)
Ib—2t|o <, (3.6)

and that the mesh discontinuities are controlled for the spatial meshes and the length of the time
steps are graded so that |x(ti+)|1 < Culx(ti-)|1 for all x € Vi, with

CuAt; < 8At;_;. (3.7)

Then, if At = maxi<i<m At; is sufficiently small, there exists a positive constant C' such that
the finite element solution satisfies

T
o= l? < €{ inf fu=xlP+ [ 182w OFF de}, (3:8)
XEVh 0
where C' depends on p, k,d,p, and the differential equation.

We emphasize that the diffusivity is assumed constant to simplify the proof and that the
theorem extends to more general linear parabolic equations in which ||a; |« is bounded (see
[16]). Furthermore, the proof is restricted to the case where we use the collocation nodes
determined by Gauss-Radau quadrature, characterized by e = 2/3, as Gauss-Radau quadrature
has a positive truncation error, which helps bound the aggregation of the local truncation errors.
Furthermore, the intermediate time basis node for Gauss-Radau is 2/3, which is close to the
optimal value € = 2 — v/2 ~ 0.5858 for TR-BDF2.

Proof. For this proof, we use the discrete Galerkin orthogonalities

(ur — Uh,Ts X) + Az (u— Uh,RK 5 x) =0,

at t = t;1, ti2 for any finite element function, x € Vy, where up rx(ti1) = un,rr(ti1) and
un, rK (ti,2) = un(ti-)-
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Following Dupont [8], let ¢ in V}, be an arbitrary function and define ¢ = up — ¢ in V}, and
1n = u — 1. Then, at the time collocation node

(67, X) + Ar(PRKES X) = (N7, X) + Ar(MRE S X) + Ar (U — uRK, X), (3.9)

where ¢ri, NrK are defined similarly to up rrx. At t =1¢;1, t; 2, choose x = ¢rr to get

(67, 0m1c) = 501013 + (6, brsc = 0), (3.10)
Ar (¢, 0ric) > a(l = )|ori[f — Clorxl, (3.11)
(0, ¢ric) < Clne |ty v, 0y + aclorrl?, (3.12)
Ar(nric, 9ri) < Clngic|? + aeldrrl?, (3.13)
Ar(u—urk, ¢rx) < Clu — urk|; + aeldrk i, (3.14)

where € is used to represent arbitrarily small positive constants and its value may differ from
bound to bound for notational convenience; similarly, the value of C' may also change throughout
the proof. Combining (3.9)—(3.14) gives the bound

S0 1013 + a1 — Olénl} + (67, G — 0)

<C{ Iy, oy + Il + o — w3 + I3} (3.15)

This provides a bound at each time collocation node, which now needs to be extended to a
telescoping sum on each time-step so that the Discrete Gronwall lemma can be applied.

Using the error estimate for Gauss-Radau collocation nodes, it holds that

3 1 ! 1

P+ 30 = [ 51,

for some ¢ in [0, 1] and any bounded function with |%f(t)‘ < oo on [0,1], for & < 3. For the
characteristic derivative terms in (3.15), applying the quadrature rule over the time partition
gives

3AtL; At;
L0 16(t0IE + = 0rlo(t2) 13
2 2 At;l 4 2
16 (ti )13 — 10(tir )1 + -0t (ki1 + (AL

1
=6t )15 = I9(ti-14)15 + 35 1AL drr 5,

where the last equality comes from 93¢ = 0, so that At}92|¢|2 = 6]|At?¢; .-|3. Apply the
quadrature rule to the characteristic derivative and use (3.4) to show

3AtL;
4

At; 1
Orlo(ti )5 + =016 (ti2)[6 > 1o (ti-)I5 — lo(tioa-)I5 + %HN?@,TTH% (3.16)
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Combining the bound from the inequality and (3.15) yields

3 1
lo(ti-)g — lo(ti1-)]g + a(l — e)At; <2||¢TR(ti,1)"% + 2|¢(ti)|%)
1 3
+ %HAt?(bTTH% + §Ati (¢r(tin), drr(tin) — O(tin))
SCAti{Hﬁf(ti,l)H%_Lvh(ti,l)) 1w,y + et 01T + ()T

+ lu(ti) = wrr(ti)I + lorr(t)IE + lo(t-)I3 }- (3.17)

From the auxiliary Lemma 6.1 (in the appendix), bound

1 3
%HN?(I%TH% + 5 AL (¢ (tin), drr(tin) — B(ti1))
3
> sty (1= ¢ = CARIGR - (1+ ¢+ CARA(-1 )1
= CAt I (i) 1oy + Irm(tin) B

Jultin) — wrn(ts )l + 1ora(t,) 13 + 161413}

Combining this result with (3.17) gives

3 1
ot )8 161 + a1 = 8t Glorn(t) + 3ot )R )
3
gty (1= ¢~ CARIGG R - (1 -+ e+ CAI(-1 ) )
<OA{ 1 (0 vy 010y + e (i) B ey + et B + (e )12

+ Jultin) = urr(ti)IT + [9ti—10)I5 + [orr ()15 + |6t )Hg} (3.18)
To remove the ¢ terms from the upper bound, Lemma 2.2 with (3.4) shows

lo(ti1 )15 + [orr(ti)IF + lo(t-)I3
<le(ti-1-)I5 + C{||77¢(ti,1)||%71,vh(ti,1)) S R (| FARY |

+ (i )IT + In(ti-) I + lu(ti,) - uTR(ti,l)H?}. (3.19)

The H!-stability of Lo-projection [31] with (3.7) yields a telescoping sum for

1 3
iAti(l — )|t — @Ati(l + )|t}
1 3
ZgAti(l —e)|o(ti-)I3 — gAtifl(l +6)|o(ti—1-)|3
1 3
> 4801 ot + 301+ (Atibott R — Atlotr )
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This telescoping sum, together with (3.18)—(3.19), gives the bound
1660 13-+ 001006 12| = 1+ 0780 o651 + B8teal6te-1 1

n oAti{uqsm(ti,l)ﬁ ot + ||¢<<1—,1>|%}
2
<CALY  (Ine )1,y + Inrxti)IF) + CAtlu(ti 1) — urs(t I, (3.20)

Jj=1

for B = 2a(1 + €) and some 6 > 0.
For sufficiently small At;, apply the discrete Gronwall lemma to bound

1<i<m

max ()5 + Ati{II@,TRIIf +lot-)IE + ||¢(Ci71)||§}
i=1

<C{||77|||2 +3° Atlulten) — urattn)2 + 16O + At||<z><o>|%}. (3.21)

=1

For the additional terms in the upper bound, we have

[6(0)o < [n(0)]o < lInll, (3.22)

and by the HLstability of Lo-projection [31], we have

At|(0)]F < CAtn(0)]7 < CAt(IIm,TRIIf + IIH(Cl,l)Ilf) < Clnl?. (3.23)
Since the trapezoid approximation is second order, we have
t;
Atillultin) = urr(tin)|f < CTR/ | At . ()] dt, (3.24)
ti—1

which gives

1<i<m

max [t )3 + ) Ati{llaﬁi,mllf +loti-)IE + ||¢>(Cz-,1)||f}
i=1

T
<o{inl+ [ 18t 0, (325)
For t =t; 1, t; 2, bound the characteristic derivative of ¢:

orl 1wy < C{nelcamy + Inrxclh + lu = wnich + lorch }, (3.26)

and use the local Gronwall lemma again to bound the maximum |¢(¢;1)]o at the intermediate
collocation nodes. Thus, combining (3.25)—(3.26) and the local Growall inequality, we have

T
ol < C{Il + | 16w (0] dt}.

The result follows from an application of the reverse triangle inequality. O

For problems with Dirichlet boundary conditions, let up(-,t) be some H!(Q) function sat-
isfying the Dirichlet boundary condition at time ¢. Then, the solution can be decomposed,
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u = up + ug, with ug(-,t) € H§(Q) < HY(Q), where H}(€) is the subspace satisfying a homo-
geneous Dirichlet boundary condition. Solving for the weak solution, u, is then equivalent to
solving for ug(-,t) € H() satisfying

(UO,T('vt)7X) +A7(t;u07X) = (f(?t)v)() + <g(at)7x> - [(UD,T(.?t)7X) =+ AT(t;uD;X)iL

for all y € H(l)(Q), and 0 <t < T. To compute the finite element solution, we seek up o € Vi 0 C
V4, which is the subspace of V}, without the degrees of freedom on the Dirichlet boundary. Then,
the Galerkin orthogonality holds at the collocation points for ug and us0, and an analogous
argument to the proof of Theorem 3.1 can be used to bound [Jug — up | over all functions in
Vho-

4. Numerical Experiments

In this section, we present numerical results that demonstrate some applications of TR-
BDF2 quadratic moving finite elements. Although Theorem 3.1 assumed the basis node ¢ = 2/3,
corresponding to Gauss-Radau quadrature, the numerical experiments here verify that second
order convergence in time holds for nearby values of this collocation node, especially when the
solution varies slowly along the characteristics of the mesh.

We implemented a moving mesh solver in MATLAB to test the performance of our method
on a Dirichlet boundary value problem that develops a boundary layer. The test problem is

ug(x,t) — 10*4um(x,t) + ug(x,t) =1, for (z,t) € (0,1) x (0,1],

subject to the boundary conditions «(0,t) = u(1,¢) = 1 and initial condition u(x,0) = 1.

Dirichlet boundary conditions readily lead to boundary layers in the presence of strong
convection; our mesh motion scheme uses a uniform mesh at the beginning of each time-step
and Lo-projection is used at the mesh discontinuities so that |Jup, (t;+)||1 < Cy|lun(t;-)|]1 holds
across these mesh discontinuities [31]. The mesh evolves in time using x; = 1 as an initial
guess; this causes elements to flow out the right-side of the domain and so a relaxation is used
%xk (t) = 0 < 1 to ensure that these outflowing elements crowd inside of the boundary and
do not shrink by more than a factor of ten: 15Awg(t;_1+) < Awg(t;-) for all i and k.

Fig. 4.1 depicts the standard finite element solution, the moving finite element solution, and
a moving space-time mesh (coarsened for clearer presentation). For this problem, e = 2 — /2,
which is the value that optimizes the truncation error of TR-BDF2 integration scheme.

The moving mesh yields a steady state solution u, ~ 14+ with a boundary layer, as expected
so that u, ~ 1, as suggested by the differential equation. We see that the adaptivity provided
by the mesh motion has appropriately aggregated nodes in the boundary layer, stabilizing the
computed solution.

Another experiment implements the moving finite element scheme for a nonlinear problem.
Burgers’ equation is an interesting test problem for our scheme as it is a simple nonlinear
equation that is a one-dimensional analogue of the Navier-Stokes equation that develops steep
moving fronts that sweep through the domain. As both Burgers’ equations and the Navier-
Stokes equations have a convection term that is proportional to the solution of the equation,
the exact same mesh-moving scheme can be used for both problems. (Note that the divergence-
free property of the solution to Navier-Stokes helps avoid mesh degeneration as the mesh evolves
along characteristics of the computed solution.)
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(a) (b)
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1
0.99 0.992 0.994 0.996 0.998 1

Fig. 4.1. Computed steady state solutions to the Dirichlet test problem with the same initial mesh
configuration. The standard finite element solution is shown in (a); the moving mesh solution is shown
in (b). A moving space-time mesh is depicted in (c) that has been coarsened for a clearer presentation;
the mesh is reset to be uniform at each time step and outflowing nodes are crowded inside the boundary
to ensure a quasi-uniform mesh. Plot (d) shows a close-up of the boundary layer for the moving mesh
solution.

Artificial oscillations are commonly found near the shock layer of the computed solution
of Burgers’ equations when the time discretization is not sufficiently refined [4,5]. Several
techniques have been developed to stabilize the computed solutions for such problems using
moving meshes, adaptive meshing [32,33], space-time formulations [34], Galerkin methods us-
ing a method-of-lines approach [35], and upwind post-processing techniques [36]. For this
experiment, the moving space-time method solves a one-dimensional Burgers’ equation with a
large Reynolds number. The differential equation is given by

1
Ut — s +uu, =0 for (z,t) € (-3,3) x (0,2], (4.1)

where we choose a large R > 0 and assume Neumann boundary conditions, u,(+3,t) = 0.
The initial condition is chosen so that a moving front forms in the middle of the domain and
propagates toward the right boundary.

We implemented a solver for this problem in C++ that uses an approximate method of
characteristics to move the mesh, x; ~ u. The solution is computed at the end of each time
step so that we can use linear mesh motion, x4(t) = up(z, t;_1+) for t;_1 <t <t;. Furthermore,
we use a single step of Newton’s method to linearize the equation at each collocation node, using
up(t;_1+) as the initial guess. Unlike the previous experiment, we do not reset the mesh to
be uniform at the beginning of each time partition. This allows the nodes to appropriately
accumulate near the shock layer, where elements are coarsened once they shrink by more than
a factor of 10™* of their original size. To ensure the H!-stability of the solution across these
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discontinuities, Lo-projection is used to define the solution on the new mesh.

In addition to the standard Galerkin discretizations for the non-moving and moving meshes,
we also compare our results to a solution computed using a Streamline Upwind /Petrov Galerkin
(SUPQG) discretization [37] to the linearized equation on a fixed mesh. Let @y, denote the SUPG
computed solution and wy = up(t;_1+) denote the initial guess for the Newton iteration; the
linearized equation describing the SUPG finite element solution is given by modifying the space
of test functions to take the form x + dpwp X, With x € Vy, where d, = cAx; on each element
for some SUPG coefficient o > 0:

(Un(tij), x) + %(ﬁh,z(ti,j)aXx) + (wh'ﬁh,m(ti,j)aX) + (wh,w'ﬁh(ti,j),X)

= 1= = =
+ (Uh,t(ti,j) — RUh,za(tij) + walne(tij) + wh,xuh(ti,j)75hwh><x>h =0, (42)

where we use the broken Lo-inner-product summing over the elements in the mesh, (v, w), =
> (v,w).. We see that this formulation gives a consistent diffusive term of order d,wj, which
provides stability near the shock layer.

T T T T T T T
-3 2 -1 0 1 2 3

VY

T T T T T T T
-3 2 -1 0 1 2 3

00 04 08

Static Mesh

00 04 08

SUPG Static Mesh

T

Moving Mesh

00 04 08

Fig. 4.2. Solutions computed for Burgers’ equation with R = 100, using n = 61 spatial nodes and
m = 25 time steps. For the SUPG discretization, we take the SUPG coefficient ¢ = 0.1. Each graph
displays the initial condition and the solution at the intermediate t = 1, and the final time ¢ = 2.

Fig. 4.2 displays solutions for equation (4.1) with R = 100, computed on static and mov-
ing meshes, as well as the solution to (4.2) on a fixed mesh with SUPG coefficient o = 0.1.
Numerically-induced oscillations are expectedly present in solution on the non-moving mesh
[38], whereas they have been suppressed in the SUPG and the moving mesh solutions. From
Fig. 4.2, the moving finite element solution maintains a steep drop into the moving front,
where artificial diffusion is clearly present at the top of the shock layer in the SUPG solution.
This demonstrates the increased flexibility in the time discretization when moving the mesh,
without the artificial diffusion of a SUPG discretization. Experiments combining SUPG and
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moving meshes give similar results to the moving finite element solution in Fig. 4.2 since the
“streamline direction,” now given by u — x;, is small. Fig. 4.3 depicts an example of a moving
mesh used for solving the PDE, coarsened for improved presentation. We see the spatial nodes
accumulating at the shock layer, as desired.

Fig. 4.3. An example of a moving mesh with m = 25 time steps and initialized with n = 61 spatial
nodes at the beginning of the simulation. The method of characteristics sets ¢ (t) = up(z,t;_1+) at
the vertices in the mesh, bump node trajectories are defined to bisect their neighbors as seen on the
left side of the mesh.

00 04 08
L
[

Static Mesh

00 04 08
L1

SUPG Static Mesh

|

T T T T T T T
-3 -2 -1 0 1 2 3

00 04 08

Moving Mesh

Fig. 4.4. Solutions computed for Burgers’ equation with R = 1000, using n = 301 spatial nodes and
m = 100 time steps. For the SUPG discretization, we take the SUPG coefficient 0 = 1. Each graph
displays the initial condition and the solution at the intermediate t = 1, and the final time ¢ = 2.

We also ran simulations where the Reynolds number is set to R = 1000. This reduces the
diffusive forces in the equation and leads to a thinner shock layer. The SUPG parameter is set
to o = 1 and solutions computed with 100 time steps are displayed in Fig. 4.4, where we again
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see the moving finite element solution is remarkably smoother on either side of the shock layer
without artificial diffusion at the shock.

We compare the runtimes of computing a moving mesh solution using TR-BDF2 and the
fully-implicit second-order backward difference time integration scheme with the mid-step basis
node set to be ¢ = 2 — V2. Thus, the only difference between the TR-BDF2 scheme and
the implicit backward difference scheme is that wp g (1) is replaced in (3.1) by its quadratic
interpolant:

2—¢ 2 — e?

——up(tio1+) + 4(17_65)1%(@1) — m

4 Uh(ti—)

up(ti1) =
so that the solution at the mid-step and end-step must be computed simultaneously. We see
that the semi-implicit property of TR-BDF2 always leads to faster runtimes, as evidenced in
Table 4.1. For a discretization with N nodes, the fully-implicit scheme requires solving a linear
system of 2N unknowns for each time step, whereas two linear systems of N unknowns are
sequentially solved for the TR-BDF2 scheme. As a result, the relative speedup becomes more
pronounced as the spatial mesh is refined. We note that more iterations of Newton’s method

or a higher-dimensional problem would indeed lead to an even greater relative speedup when
using TR-BDF2.

Table 4.1: This table displays the relative speedup of the total CPU runtime when using TR-BDF2
time integration compared to a fully implicit second-order integration scheme (BDF2). The total CPU
runtime includes computing the mesh evolution, assembling the stiffness matrix, solving the linear
systems, and projecting the solution across mesh discontinuities. The values in the table are the
(BDF2 runtime) / (TR-BDF2 runtime) computed for the entire simulation, for each discretization.

Relative Speedup
Ar | At= 1 | At =gk | At= 15 | At = o5 | At = 55
1/50 1.3250 1.3781 1.3827 1.3840 1.3839
1/100 1.5820 1.5701 1.5769 1.5787 1.5814
1/200 1.7696 1.7613 1.7664 1.7728 1.7815
1/400 | 2.0921 2.1061 2.0799 2.0880 2.1038

1/800 2.2674 1.8399 2.3516 2.3585 2.3683

The last experiment of this section presents the results of a two-dimensional problem where
a Gaussian bump is transported along a circular trajectory. The exact solution to the problem
is given by

u(z,t) = 6*2{ (@1 —cos(2mt))*+ (w2 —sin(27t))? }

on a disc with m% + x% < 9and 0 <t <T = 1. The solution is propagated in time using

the differential equation described by (2.3) with diffusion coefficient a = 107%, convection
term b = (—27wxs, 2mx1)T, reaction term ¢ = 0, and the source function f is chosen so that
the solution is given by u. The choice of convection term, b, closely tracks the motion of the
Gaussian bump so that the source term, f, is small. Dirichlet boundary conditions are imposed,
where the values are sampled from the known solution.

Two strategies for mesh motion are compared. The first approach employs a static mesh;
the second approach requires analytically solving a simple ordinary differential equation so that
x; = b, which is possible for this convection term, and shows how de-stabilizing the convection
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Table 4.2: The table on the left displays the relative 7*-norm of the error of the computed solution on
a static mesh at times T" = 0.25, 0.5, and 1. The values for Az represent the diameter of the spatial
elements at each time-slice. TR-BDF2 time integration is used with € = 2 — v/2. The figures on the
right plot the log(H'-error) as sampled along the diagonal of the tables to show the convergence as
the spatial and temporal discretizations are refined. The convergence rate is shown to be less than
second-order when compared to a line of slope two, and larger values of T' show that accumulated
truncation errors lead to worse performance.

T=1/4 ,
Az | At=1 ] At=1]At=2L | At=L 4
3/10 | 0.986 | 0.582 0.372 0.193 -2
3/20 | 0.986 | 0.579 0.366 0.176 -
3/30 | 0.985 | 0.579 0.365 0.174 225 3~ -0 2% ~Too ~d7s
3/50 | 0.985 | 0.579 0.364 0.172

T=1/2 , ——
3/10 | 1.24 0.876 0.619 0.343 f e
3/20 | 1.24 0.872 0.612 0.323 N /
3/30 | 1.24 0.872 0.610 0.320 -
3/50 | 1.24 0.872 0.610 0.319 B

Tr=1 T=1

3/10 | 1.37 1.12 0.898 0.569 of
3/20 | 1.37 1.12 0.888 0.546 -
3/30 | 1.37 1.12 0.887 0.543 -
3/50 | 1.37 1.12 0.886 0.542

log(Ax + At)

term truly is. Since the mesh motion corresponds to rotating a mesh on a circular domain, the
mesh does not undergo any discontinuous changes at the discrete time-steps.

The software package PLTMG by Bank [39] provides the foundation for the presented work,
in which the proposed finite element method of this paper uses TR-BDF2 integration to evolve
a computed solution to the initial value problem to time T = 1. For the moving mesh, the
mid-point basis in time is set to € = 2 — /2 and 2/3 to test the optimal truncation collocation
scheme and Gauss-Radau quadrature scheme. Below are three sets of tables that detail the
H!-error of the computed solution for ¢t = 0.25, 0.5, 1 using the above meshing strategies.

Table 4.2 displays the relative H'-error values and convergence plots for the first approach
using a static mesh: ||u — up||1/||ul]1. Table 4.3 and Table 4.4 present error values and conver-
gence plots for the moving mesh with ¢ = 2 — /2 and € = 2 /3, respectively. Reviewing the
order of convergence for these computed solutions shows that the solution computed on a static
mesh

suffers from too much truncation error in time. As a result, the static mesh strategy does
not appear to have quadratic convergence as the bounding constant from the error analysis
is too large. On the other hand, the moving meshes clearly show quadratic convergence as
the spatial and time discretization are refined. Fig. 4.5 depicts solutions computed at various
times on a static mesh and a moving mesh, where the moving mesh clearly shows an improved
solution.

We close this section by commenting that mesh motion schemes have been developed using
error estimates [18] and predictor-corrector techniques [1,24] that fall into the theoretical frame-
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Table 4.3: The table on the left displays the relative H'-norm of the error of the computed solution
on a moving mesh at times T = 0.25, 0.5, and 1. TR-BDF2 time integration is used with ¢ = 2 — /2.
The figures on the right plot the log(#'-error) as sampled along the diagonal of the tables to show the
convergence as the spatial and temporal discretizations are refined. The convergence rate is shown to
be second-order when compared to a line of slope two; note that the convergence rate is the same for
larger T', though the bounding constant is larger.

T=1/4 N
Az | At=5 [ At=3 | At=5 | At =5 -
3/10 | 2.95E-1 | 5.58E-2 | 3.20E-2 | 2.87E-2 .
3/20 | 2.92E-1 | 4.81E-2 | 1.81E-2 | 8.52E-3 -
3/30 | 2.92E-1 | 4.75E-2 | 1.69E-2 | 5.81E-3 7225 7200 175 150 125 100 075
3/50 | 2.92E-1 | 4.74E-2 | 1.67E-2 | 5.04E-3
T=1/2
3/10 | 5.58E-1 | 9.99E-2 | 4.41E-2 | 3.00E-2 -2
3/20 | 5.56BE-1 | 9.50E-2 | 3.41E-2 | 1.21E-2 .
3/30 | 5.56BE-1 | 9.46E-2 | 3.34E-2 | 1.03E-2
3/50 | 5.56E-1 | 9.44E-2 | 3.32E-2 | 9.90E-3 RO e T
T=1
3/10 | 9.90E-1 | 1.92E-1 | 7.31E-2 | 3.46E-2 °
3/20 | 9.89E-1 | 1.88E-1 | 6.69E-2 | 2.09E-2 =
3/30 | 9.89E-1 | 1.88E-1 | 6.65E-2 | 1.99E-2 ”
3/50 | 9.88E-1 | 1.88E-1 | 6.63E-2 | 1.97E-2

log(Ax + At)

Table 4.4: The table on the left displays the relative 7{'-norm of the error of the computed solution on a
moving mesh at times 7" = 0.25, 0.5, and 1. TR-BDF2 time integration is used with the Gauss-Radau
collocation node, ¢ = 2/3, as required by Theorem 3.1. The figures on the right plot the log(H'-
error) as sampled along the diagonal of the tables to show the convergence as the spatial and temporal
discretizations are refined. The convergence rate is shown to be slightly faster than second-order when
compared to a line of slope two, as Gauss-Radau integration converges at a third-order rate. The
convergence rate is at least second-order for all values of T

T=1/4 T=14
Az | At=1 [ At=¢ [At=1 | At= 5% -2
3/10 | 2.54E-1 | 4.51E-2 | 3.02E-2 | 4.51E-2 .
3/20 | 2.51E-1 | 3.54B-2 | 1.25E-2 | 7.30E-3
3/30 | 2.51E-1 | 3.47E-2 | 1.08E-2 | 3.80E-3
3/50 | 2.51E-1 | 3.45E-2 | 1.04E-2 | 2.50E-3 por
T=1/2
3/10 | 4.89E-1 | 7.55E-2 | 3.52E-2 | 7.55E-2 -
3/20 | 4.86E-1 | 6.96B-2 | 2.19E-2 | 8.28E-3 -
3/30 | 4.86E-1 | 6.91E-2 | 2.09E-2 | 5.45E-3 -
3/50 | 4.86E-1 | 6.89E-2 | 2.07E-2 | 4.63E-3 B
T=1 T=1
3/10 | 8.98E-1 | 1.42E-1 | 5.06E-2 | 1.42B-1 T T
3/20 | 8.97E-1 | 1.38E-1 | 4.21E-2 | 1.14E-2 R
3/30 | 8.96E-1 | 1.37E-1 | 4.15E-2 | 9.50E-3 . /
3/50 | 8.96E-1 | 1.37E-1 | 4.13E-2 | 9.05E-3

log(Ax + At)
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Fig. 4.5. The computed solutions at various times are plotted on a mesh with Az = 3/10, At =1/12,
and ¢ = 2 — /2. The solution computed on a static mesh is on the left with its level-sets and the
moving mesh solution is on the right with its level sets. From top to bottom, the plots show the initial
conditions at ¢ = 0, the solutions at ¢ = 1/4, the solutions at t = 1/2, and the solutions at ¢ = 1. The
computed solution with e = 2/3 as required by Theorem 3.1 are similar. The illustrated solutions show
a more accurate solution computed on the mesh that offsets the convection term.

work presented here and could be used for extending our experiments. A multi-dimensional
mesh motion scheme of primary interest could use a posteriori error estimates and adaptive
meshing (h-refinement at the mesh discontinuities and mesh smoothing to evolve the mesh
continuously) to find a suitable moving mesh [40, 41].
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5. Conclusion

Theorem 4.3 of [6] provides a symmetric error bound for some space-time moving finite ele-
ment methods that use a one parameter family of fully implicit collocation methods. Employing
TR-~-BDF2 for time integration, however, does not fit into this framework and complicates the
analysis of this finite element method, ultimately breaking the symmetry of the error bound.
Nevertheless, it is straightforward to show that Theorem 3.1 implies second order accuracy
with respect to mesh refinement using Theorem 2 of [6]. Furthermore, improved accuracy for
the moving finite element solution is maintained in application to a simple nonlinear problem,
although the theoretical analysis does not cover such a case.

In the numerical experiments, the method of characteristics was used to determine the mesh
motion, though other mesh moving schemes may yield superior results. Generally, however, an
optimally robust and well-defined mechanism for evolving the mesh for general PDEs is still
a matter of active research. It is suspected that predictor-corrector methods, coupled with
adaptive meshing for the spatial discretization, can be powerful tools in moving the mesh
without requiring additional user-supplied information about a PDE or its solution.

6. Appendix

Here is a technical lemma that is used to prove Theorem 3.1.

Lemma 6.1. For ¢ in V), and n in V satisfying (3.9) at time t = t; 1, it holds that

%HAt?@r(ti,l)Hg + gAti (¢r(ti1) drr(ti1) — G(ti1))
> S ot ((1- e~ CARIBGIE — (1+ e+ CAR) (10 )IE)
— OOt {171y, + Il + Ju = url? + lorld + lot )13},
for positive constant C' and arbitrarily small positive constant e.

Proof. Fix 1 < i < M and, to avoid clutter, suppress the time variable, though it is
understood that the following argument holds at time ¢t = ¢; ;. The error of the trapezoid
approximation is given exactly by

¢rrR— ¢ = TISAtinT‘ra
which is used with the Cauchy-Schwartz inequality to show
Ati(r, drr — 8) = 7<(Atidr, Ao,)
> — At oA ol
>~ {S1ano i - S1a6, R} (G=3)
> — o | Atie R — o126 IR,

This leads to the initial lower bound:

1 9 5 3 1 9
_ : e . _ > .
36 "Atz ¢~r7' ”0 + 2At2(¢‘rv d’TR ‘j)) e 16 "Atz¢7' "O (6'1)
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To bound the norm of the time derivative, set x = At?¢, in (3.9). This gives

|Atib- |3 = (e, At2hr) + Ar (7R, A2 Or) + Ar(u — urp, At dr) — A (bR, Ati9,), (6.2)

where each term on the right can be bounded separately.
Let ¢;; = (;S(ac(ti,l), Q,j) denote ¢((; ;) shifted onto the mesh of Vj(¢;1):

(777'7 At%(b‘r) S CAtl ”777'”%_17\}“)51»11)) + aGAtl(”&’Ll”i + ||J)1,0”?)) (63)
A (nrr, At; ) < CAt|Inrr|T + aﬁAti(”fJBmHi + ||<2~510H?), (6.4)
A;(u —urr, At2¢,) < CAti|u — urr|? + aeAt; (H&n ||i + HquoHi), (6.5)

and, assuming the Gauss-Radau collocation node e = 2/3,
3 - - -
— A (o7R, At} ;) = _iAtz\A’r(qsi,l — $i0,Pi,1 + dio)
3 2 T2 b
< - iaAti ((1 —€) H¢z‘,1H1 -1+ 6)“@,1”1) + CAtz‘(”(?TRH(% + ||¢i,0||(2))- (6.6)

Combining bounds (6.1)—(6.6) closely resembles the desired result, where the finite element
function ¢ is shifted onto the mesh at time ¢t = ¢; 1. To get the desired result, apply (2.8) and
(2.9) from the Shift Lemma 2.1. Note that the € in the result is understood to be different from
the € in the above bounds.
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