
J. At. Mol. Sci.

doi: 10.4208/jams.012511.030511a
Vol. 2, No. 4, pp. 360-367

November 2011

Bound state solutions of the s-wave Klein-Gordon

equation with position dependent mass for

exponential potential

Tong-Qing Dai∗

College of Electronics and Information Engineering, South-Central University for

Nationalities, Wuhan 430074, China

Received 25 January 2011; Accepted (in revised version) 5 March 2011

Published Online 28 June 2011

Abstract. Bound state solutions of the s-wave Klein-Gordon equation with spatially depen-

dent exponential-type mass for exponential-type scalar and vector potential are studied by

using the Nikiforov-Uvarov method. The wave functions of the system are taken on the

form of the Laguerre polynomials and the energy spectra of the system are discussed. In

limit of constant mass, the wave functions and energy eigenvalues are in good agreement

with the results previously.
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1 Introduction

When a particle is in a strong potential field, the relativistic effect must be considered, which

gives the correction for non-relativistic quantum mechanics. Taking the relativistic effect into

account, one can apply the Klein-Gordon equation to the treatment of a zero-spin particle

and apply the Dirac equation to that of a 1/2-spin particle. In fact, the problem of exact

solutions of the Klein-Gordon equation for a number of special potential has also been a line

of great interest in the recent years [1–7]. For example, some authors assumed that the

scalar potential is equal to the vector potential and obtained the exact solutions of the klein-

Gordon equation with some typical potential by using different methods. These investigations

include the harmonic oscillator [8], the triaxial and axially deformed harmonic oscillators

potential [9], Eckart potential [10, 11], Woods-Saxon potential [12], pseudoharmonic oscil-

lator [13], ring-shaped Kratzer-type potential [14], ring-shaped non-spherical oscillator [15],
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double ring-shaped oscillator [16], Hartmann potential [17, 18], Rosen-Morse-type poten-

tial [19], generalized symmetrical double-well potential [20], Scarf-type potential [21], etc.

These methods include the standard method, supersymmetry quantum mechanics [10], the

Nikiforov-Uvarov (NU) method [12,22–24], and others.

On the other hand, the concept of the position dependent mass in the quantum mechani-

cal systems has also attracted a lot of attention and inspired intense research activities. They

are indeed very useful and have been widely used in many different fields, such as semi-

conductor physics [25], quantum wells and quantum dots [26], He clusters [27],quantum

liquids [28] and semicondector heterostructures [29], etc. In recent years, the solutions of

the nonrelativistic wave equation with position dependent mass have been a line of great in-

terest [30–34] but there are only few contributions that give the solution of the relativistic

wave equation with position dependent mass in the quantum mechanics. Alhaidari [35] stud-

ied the exact solution of the Dirac equation with position dependent mass in the Coulomb

field. Vakarchuk [36] investigated the Kepler problem in Dirac theory for a particle whose

potential and mass are inversely proportional to the distance from the force center. Jia et al.

investigated the approximately solution of the one-dimensional Dirac equations with spatially

dependent mass for the generalized Hulthen potential [37]. Jia and Souza Dutra [38] consid-

ered position-dependent effective mass Dirac equations with PT and non-PT symmetric poten-

tial. In Ref. [39], Souza Dutra and Jia investigated the exact solution of the one-dimensional

Klein-Gordon equation with spatially dependent mass for the inversely linear potential. Here

we intend to study the one-dimensional Klein-Gordon equation for the exponential potential

with an exponentially spatially dependent mass. We solve the equation by using the Nikiforov-

Uvarov method [40] and discuss the limit of the constant-mass. The organization of this paper

consists of three sections: In Section 2, we review the Nikiforov-Uvarov method briefly. Sec-

tion 3 is devoted to the analytic bounded solutions of the Klein-Gordon equation for this

quantum system by the NU method. Finally, the relevant results are discussed in Section 4.

2 Nikiforov-Uvarov method

The NU method is based on solving the second-order linear differential equation by reducing

to a generalized equation of hypergeometric type.The NU method has been used to solve the

Schrodinger,Dirac and Klein-Gordon wave equations for certain kind of potential [41]. In this

method, the second-order differential equation can be written in the following form

ψ(s)′′+
τ̃(s)

σ(s)
ψ′(s)+

σ̃(s)

σ2(s)
ψ(s)=0, (1)

where σ(s) and σ̃(s) are polynomials, at most second degree, and τ̃(s) is a first-degree

polynomial. In order to find a particular solution to Eq. (1), we use the following transformed

ψ(s)=φ(s)y(s). (2)
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It reduces the Eq. (1) to an equation of hypergeometric type

σ(s)y ′′+τ(s)y ′+λy=0, (3)

where φ(s) is defined as a logarithmic derivative

φ′(s)/φ(s)=π(s)/σ(s). (4)

The other part y(s) is the hypergeometric-type function whose polynomial solution are given

by the Rodrigues relation

yn(s)=
Bn

ρ(s)

dn

dsn

�

σn(s)ρ(s)
�

, (5)

where Bn is a normalizing constant and weight function ρ(s) must satisfy the condition

(σρ)′=τρ. (6)

The function π and the parameter λ required for this method are defined as follows

π(s)=
σ′−τ̃

2
±
È

�

σ′−τ̃
2

�2

−σ̃+kσ, (7)

λ=k+π′. (8)

On the other hand, in order to find the value of k, the expression under the square root

must be the square of the polynomial. Thus, a new eigenvalue equation for the second-order

differential equation becomes

λ=λn=−nτ′− n(n−1)

2
σ”, (9)

where

τ(s)= τ̃(s)+2π(s), (10)

and its derivative is negative. By comparison the Eq. (8) and Eq. (9), we obtain the energy

eigenvalues.

3 Bound state of solutions in terms of the NU method

In the relativistic atomic units ( h̄= c=1), for a spinless particle, the three-dimensional radial

s-wave Klein-Gordon equation with position dependent mass is written as follows [39]

�

d2

dr2
+
�

E−V (r)
�2−
�

m(r)+S(r)
�2

�

u(r)=0, (11)
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where the radial wave functions is φ(r)=u(r)/r, and V (r) and S(r) are vector and scalar

potentials respectively. From Eq. (11), we have

d2u(r)

dr2
+
�

E2−m2−2mS−2EV+V 2−S2
�

u(r)=0. (12)

If we consider the case exponential-type scalar and vector potential case [41,42], the poten-

tials can be written as

S(r)=−S0e−αr , V (r)=−V0e−αr , (13)

where S0, V0 and α are constant. We take a specific form of the position dependent mass

m(r)=m0(1−qe−αr). (14)

Substituting the Eqs. (13) and (14) into the Eq. (12), we obtains

d2u(r)

dr2
+
�

−K1e−2αr+K2e−αr+E2−m2
0

�

u(r)=0, (15)

where

K1=(S0+m0q)2−V 2
0 , K2=2(EV0+m2

0q+m0S0). (16)

Defining a new variable z = e−αr and substituting it into Eq. (15),we obtain the following

equation

d2u(z)

dz2
+

1

z

du(z)

dz
+
−γz2+βz−ε2

z2
u(z)=0, (17)

where

ε2=
m2

0−E2

α2
, β=

K2

α2
, γ=

K1

α2
. (18)

To solve Eq. (17), we apply the NU method in the present case. By comparing Eq. (17) with

Eq. (1), the following expressions are obtained as

τ̃=1, σ=z, σ̃=−γz2+βz−ε2. (19)

Substituting the above expressing into Eq. (7), we have the function π

π(z)=±
p

γz2+(k−β)z+ε2. (20)

According to the NU method, the expression in the square root must be the square of the

polynomial. Then the solution of Eq. (20) gives two roots of k individually,

k1,2=β±2
p
γε. (21)

In view of that, we can find two possible function π for each k as

π=

¨

±(pγz+ε), for k1=β+2
p
γε,

±(pγz−ε), for k2=β−2
p
γε,

(22)
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where k is determined by the polynomial τ= τ̃+2π has a negative derivative. The most

suitable form of π(z) is selected as

π=−pγz+ε, for k2=β+2
p
γε. (23)

Hence τ(z) and τ′(z) are obtained as follows

τ(z)=−2
p
γz+2ε+1, τ′(z)=−2

p
γ<0. (24)

According to Eq. (8) and Eq. (9), we have

λ=β−2
p
γε−pγ, (25)

λn=2n
p
γ. (26)

Letting λ=λn, the relation of the values n and the constant ε can be obtained as

ε=− (2n+1)
p
γ−β

2
p
γ

. (27)

Substituting the Eq. (18) into the Eq. (27), one obtains

E2=m2
0−




1

2

K2
p

K1

−α
�

n+
1

2

�





2

, (28)

By using the Eq. (16), the exact energy eigenvalues of the Klein-Gordon equation for this

system are derived as

En(q)=
−Bn(q)±
p

B2
n(q)−4(S0+m0q)2Cn(q)

2(S0+m0q)2
, (29)

where

Bn(q)=−2α

�

n+
1

2

�

V0

Æ

(S0+m0q)2−V 2
0 +2V0m0(S0+m0q), (30)

cn(q)=α
2

�

n+
1

2

�2�

(S0+m0q)2−V 2
0

�

−2α

�

n+
1

2

�

m0(S0+m0q)
Æ

(S0+m0q)2−V 2
0
+m2

0V 2
0 . (31)

Let us now find the corresponding eigenfunctions for this system. Using Eq. (4) and Eq. (6),

we can find

φ(z)=zεe−
p
γz , (32)

ρ(z)=z2εe−2
p
γz . (33)
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Substituting Eq. (33) into Eq. (5), the polynomial yn(z) can be found as follows

yn(z)=Bnz−2εe2
p
γz

dn

dzn

�

zn+2εe−2
p
γz
�

. (34)

By using u(z)=φ(z)y(z), the solution of the Eq. (12) can be written as

u(z)=Bnz−εe
p
γz

dn

dzn

�

zn+2εe−2
p
γz
�

, (35)

and it can be written in terms of the generalized Laguerre polynomials Lm
n (z)

u(z)=Nnzεe−
p
γz L2ε

n (2
p
γz). (36)

In the end, the total radial wave function of the system is shown below

φn(r)=Nn

1

r
exp(−αεr)exp(−pγe−αr)L2ε

n (2
p
γe−αr), (37)

where Nn is normalization constant.

Now that we have obtained the energy eigenvalues of the radial s-wave Klein-Gordon

equation with position dependent mass for the exponential potential, we will start to discuss

some particular cases.

(i) For constant mass case q=0, the energy spectrum (29) can become as

En(0)=
−Bn(0)±
p

B2
0(0)−4S2

0Cn(0)

2S2
0

, (38)

where

Bn(0)=−2α

�

n+
1

2

�

V0

Æ

S2
0−V 2

0 +2m0S0V0, (39)

cn(0)=α
2

�

n+
1

2

�2
�

S2
0−V 2

0 )−2α

�

n+
1

2

�

m0S0

Æ

S2
0
−V 2

0
+m2

0V 2
0 . (40)

This result is the same as in Refs. [41,42]. In this circumstance, if vector potential is

stronger than the scalar potential (V0>S0), there is no a bound state for Klein-Gordon

particle.

(ii) For q 6= 0, the energy spectrum is determined by the Eq. (29). If we use S0 instead

of S0+m0q in Eq. (29), then the Eq. (29) is the same as Eq. (38). This shows that

the mass m0q only play an additional scalar potential role. In the case of that scalar

potential is equal to vector potential (S0 = V0), the parameter K1 is always positive

values and there are bounded solutions for particles. If we consider the pure vector
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potential (S0=0,V 6=0), there are always a bound states as long as m0q>V0. When we

consider the pure scalar potential (S0 6=0,V0=0), the energy levels given by

En(q)=±
q

α(n+1/2)
�

2m0−α(n+1/2)
�

(41)

have nothing to do with the parameter S0 and q and this is in good agreement with the

result of the paper [42]. Finally, we consider the free particle case (S0=V0=0) and take

α=m0=1, the energy spectrum is given by

En(q)=±
r

�

n+
1

2

��

3

2
−n

�

, (42)

so that there are only two lowest bound state n=0 and n=1.

4 Conclusions

In conclusion, we have studied the bound state solutions of the s-wave Klein-Gordon with po-

sition dependent mass for exponential-type scalar and vector potentials by using the Nikiforov-

Uvarov method. The wave functions are given by the generalized Laguerre polynomials and

the energy of this system are given the Eq. (29). We introduce an exponential-type variable

mass that is the same with add scalar potential. In limit of constant-mass q=0, the energy

equation is consistent with the results previously.
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