
Journal of Computational Mathematics

Vol.37, No.4, 2019, 541–555.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1810-m2016-0774

A FOURTH-ORDER COMPACT AND CONSERVATIVE

DIFFERENCE SCHEME FOR THE GENERALIZED

ROSENAU-KORTEWEG DE VRIES EQUATION
IN TWO DIMENSIONS*

Jue Wang and Qingnan Zeng

School of Science, Harbin Engineering University, Harbin 150001, China

Email: wangjue3721@163.com, zengqingnanexo@163.com

Abstract

In this paper, a conservative difference scheme for the Rosenau-Korteweg de Vries

(RKdV) equation in 2D is proposed. The system satisfies the conservative laws in energy

and mass. Existence and uniqueness of its difference solution have been shown. The order

of O(τ 2+h4) in the discrete L∞-norm with time step τ and mesh size h is obtained. Some

important lemmas are proposed to prove the high order convergence. We prove that the

present scheme is unconditionally stable. Numerical results are also given in order to check

the properties of analytical solution.
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1. Introduction

There are mathematical models which describe the dynamics of wave behaviors, such as the

KdV equation, the Rosenau equation, and many others. The existence and uniqueness of the

solution for the Rosenau equation were proved by Park [1, 2]. For the further consideration of

nonlinear waves, the viscous term uxxx needs to be included in the equation. This equation

is usually called the Rosenau-KdV equation [3–8]. In this paper, we consider the 2D RKdV

equation with initial and periodic boundary conditions as follows:

ut +∆2ut +∆ux + (1 + up)(ux + uy) = 0, (x, y) ∈ Ω, t ∈ (0, T ], (1.1)

with periodic boundary condition

u(x, y, t) = u(x+ L1, y, t), u(x, y, t) = u(x, y + L2, t), (x, y) ∈ Ω, t ∈ (0, T ], (1.2)

and initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (1.3)

where Ω = (0, L1)×(0, L2), ∆u = ∂2u
∂x2 +

∂2u
∂y2 , p ≥ 1 is an integer and u0(x, y) is (L1, L2)-periodic

real function. In fact, the problem (1.1)-(1.3) is known to satisfy the following conservative laws

(see [9]):

Q(t) =

∫∫

Ω

u(x, y, t)dxdy =

∫∫

Ω

u0(x, y)dxdy = Q(0), (1.4)
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and the energy

E(t) =‖ u ‖2L2(Ω) + ‖ ∆u ‖2L2(Ω)= E(0). (1.5)

Due to uneasy control of the nonlinear term, numerical study of the Rosenau equation in

2D by the finite difference method is relative less. In [3], a conservative three-level linear finite

difference scheme for the Rosenau-KdV equation is proposed. In [10], a new conservative finite

difference scheme with real parameter for the Rosenau equation is given. In [9], Atouani and

Omrani proposed two second-order conservative finite difference schemes for the RKdV equation

in 2D. In [11], approximate solutions are considered for the extended Fisher-Kolmogorov (EFK)

equation in two space dimension with Dirichlet boundary conditions by a Crank-Nicolson type

finite difference scheme. Wang et al. proposed a high order compact multisymplectic scheme

for coupled nonlinear Schrödinger-KdV equations [12].

Recently, there has been growing interest in high-order compact methods for solving partial

differential equations (PDEs). Due to the convenience of implementation on machines, differ-

ence schemes are popular for Schröinger problems. The compact scheme [13–18] such as split-

step schemes, implicit schemes, high-order schemes, unconditional convergence schemes and

conservative schemes. The conservative numerical scheme for Rosenau-RLW equation were dis-

cussed in [19–22]. In [23–25], the high-order compact schemes where used for three-dimensional

convection-diffusion equations, Sine-Gordon equation, heat and advection-diffusion equations.

Unlike some previous techniques, using various transformations to reduce the equation into

more simple equation and then solve it, the nonlinear equations are solved easily without trans-

forming the equation by using the current method. This method has also additional advantages

over some rival techniques, mainly, avoidance of linearization, ease in use, and computationally

cost effective to find solutions of the given nonlinear equations. However, because the dis-

cretization of nonlinear term in compact scheme is more complicated than that in second-order

one, a priori estimate in the discrete L∞-norm is hard to be obtained, so the unconditional

convergence of any compact difference scheme for nonlinear equation is difficult to be proved.

The remainder of this paper is arranged as follows. In Section 2, some notations are given

and a new difference scheme is proposed. Some auxiliary lemmas are introduced or proved. In

Section 3, unique solvability, discrete conservative laws of the proposed scheme are discussed.

A priori estimate is obtained. In Section 4, the convergence is proved based on the estimation.

The order of O(τ2 +h4) in the discrete L∞-norm with time step τ and mesh size h is obtained.

Lastly, numerical experiments are presented in Section 5.

2. The Compact Finite Difference Scheme

Let h1 = L1/J1 and h2 = L2/J2 be the space steps in the x and y directions respectively,

where J1, J2 are any positive integers. And τ = T/N (N ∈ N+) is the time step. We denote

Un
i,j to be the numerical approximation of uni,j = u(xi, yj, tn), where xi = ih1, yj = jh2, 0 ≤

i ≤ J1, 0 ≤ j ≤ J2, and tn = nτ, 0 ≤ n ≤ N . It can be seen from periodicity that un0,j =

unJ1,j
, uni,0 = uni,J2

and so on. Let the discrete grid Ωh := {(xi, yj)| 0 ≤ i ≤ J1, 0 ≤ j ≤ J2}, and

RJ1,J2

per =
{

Vi,j ∈ R
∣

∣

∣ V0,j = VJ1,j, Vi,0 = Vi,J2
, 0 ≤ i ≤ J1, 0 ≤ j ≤ J2

}

.


