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Abstract

In this paper, we consider elliptic hemivariational inequalities arising in applications in

semipermeable media. In its general form, the model includes both interior and boundary

semipermeability terms. Detailed study is given on the hemivariational inequality in the

case of isotropic and homogeneous semipermeable media. Solution existence and unique-

ness of the problem are explored. Convergence of the Galerkin method is shown under

the basic solution regularity available from the existence result. An optimal order error

estimate is derived for the linear finite element solution under suitable solution regularity

assumptions. The results can be readily extended to the study of more general hemivaria-

tional inequalities for non-isotropic and heterogeneous semipermeable media with interior

semipermeability and/or boundary semipermeability. Numerical examples are presented

to show the performance of the finite element approximations; in particular, the theoreti-

cally predicted optimal first order convergence in H1 norm of the linear element solutions

is clearly observed.
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1. Introduction

Variational inequalities for flow problems through porous media are studied in [9]. Such vari-

ational inequality problems adopt monotone semipermeability relations for the media. In [19],

extension of the problems is made for semipermeable media to allow non-monotone semiper-

meability relations, leading to hemivariational inequalities. In both these references, semiper-

meability on the boundary or in the domain is considered.
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Since the pioneering work by Panagiotopoulos in early 1980s ([18]) on variational problem-

s with nonconvex and generally nondifferentiable super-potentials, hemivariational inequalities

have attracted steady attention from the research communities in mathematics, physical sciences

and engineering. The formulation of hemivariational inequalities provides a useful framework

to both theoretically and numerically treat application problems involving non-monotone, non-

smooth and multivalued constitutive laws, forces, and boundary conditions. Hemivariational

inequalities have been shown very useful across a variety of subjects. Mathematical theory, nu-

merical approximations and applications of hemivariational inequalities can be found in several

monographs, e.g., [4,15–17,20]. The number of research papers on hemivariational inequalities

is growing rapidly. The reference [15] discusses finite element approximations of hemivariational

inequalities, including their convergence; however, no error estimates are provided. Recently,

optimal order error estimates are derived for numerical solutions of hemivariational inequalities.

The first paper along this direction is [12] where optimal order error estimates for the linear finite

element solutions for some stationary hemivariational and variational-hemivariational inequal-

ities are derived. This paper is followed by numerous papers on optimal order error estimates

of the linear finite element solutions for various hemivariational inequalities of different form,

e.g., [3] for the numerical solution of a hyperbolic hemivariational inequality, and [2] for the

numerical solution of an evolutionary variational–hemivariational inequality. A general frame-

work is presented on convergence analysis and error estimation for internal approximations of

elliptic hemivariational inequalities in [13], and that for variational–hemivariational inequalities

in [14]. In [11], a comprehensive convergence analysis and error estimation are given for both

internal and external approximations of stationary variational–hemivariational inequalities and

hemivariational inequalities. In all these references on numerical analysis of hemivariational

inequalities, the application background is contact mechanics.

The purpose of this paper is to study and approximate elliptic hemivariational inequalities

for the semipermeable media. The general hemivariational inequality incorporates both the

interior and boundary semipermeability. Let Ω ⊂ R
d be a Lipschitz domain, i.e., Ω is an

open, bounded and connected region in R
d with a Lipschitz continuous boundary ∂Ω. Here

the positive integer d is the dimension of the problem under consideration. Since the boundary

is Lipschitz continuous, the unit outward normal vector ν is defined a.e. on ∂Ω. We split the

boundary ∂Ω into two non-overlapping and measurable parts Γ0 and Γ1 with meas (Γ0) > 0:

∂Ω = Γ0 ∪ Γ1. (1.1)

We will specify a Dirichlet boundary condition on Γ0 and a Neumann inclusion condition on

Γ1. The pointwise formulation of the model problem is as follows:

−∆u = f, in Ω, (1.2)

u = 0, on Γ0, (1.3)

−
∂u

∂ν
∈ ∂j2(u), on Γ1. (1.4)

The differential equation (1.2) corresponds to the case of isotropic and homogeneous media

(cf. [9,19]). Here, ∂j2 is the generalized subdifferential of a locally Lipschitz continuous function

j2 (cf. Section 2). For simplicity, we let the Dirichlet boundary value to be zero in (1.3). The

problem with a nonzero Dirichlet boundary value on Γ0 can be handled with the standard

technique (cf. e.g., [1, Subsection 8.4.2]). To allow the interior semipermeability condition, we


