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Abstract

The convergence rate of the gradient descent method is considered for unconstrained

multi-objective optimization problems (MOP). Under standard assumptions, we prove that

the gradient descent method with constant stepsizes converges sublinearly when the ob-

jective functions are convex and the convergence rate can be strengthened to be linear if

the objective functions are strongly convex. The results are also extended to the gradi-

ent descent method with the Armijo line search. Hence, we see that the gradient descent

method for MOP enjoys the same convergence properties as those for scalar optimization.
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1. Introduction

Consider the multi-objective optimization problem (MOP)

min
x∈Rn

F (x) := [F1(x), . . . , Fm(x)], (1.1)

where F : Rn → R
m is a vector function and the components Fi(x), i = 1, . . . ,m, are contin-

uously differentiable functions. The multi-objective optimization problem has lots of applica-

tions in different fields such as engineering design [19], economic modeling [20], and financial

risk management [17]. See [8] for more applications.

In general, it is not expected to find a solution point that minimizes all objective functions

at the same time, but a Pareto optimal solution instead. A Pareto optimum means that it is not

possible to find any other feasible point whose objective function values are all smaller than those

at the Pareto optimum [13,16]. There are many approaches for finding a Pareto optimal solution

of MOP. One popular approach in industry is to reformulate MOP as a scalar optimization

problem whose objective function is a weighted combination of Fi(x), i = 1, . . . ,m [11, 12].

However, this approach may yield an unbounded objective if the weights are not properly chosen.

Another popular approach is the evolutionary algorithm which searches for a Pareto optimum

in a set of candidate solutions with some genetic operator [5]. This method is able to find an
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approximate Pareto optimum instead of an exact Pareto optimum. Another kind of approach

is descent methods, which extend the traditional descent methods for scalar optimization to

solve MOP, such as the gradient descent method [10], the Newton method [9] and the projected

gradient method [6].

In this paper, we concern the gradient descent method for MOP which was proposed by

Fliege and Svaiter in 2000 [10]. They proposed a subproblem for computing a descent direction

for all objective functions and adopted the Armijo line search with backtracking to compute

stepsizes. A remarkable property of this method is that it is a parameter free approach. This

is quite different from the weighted approach for MOP. With this method, there is no need to

analyze the prior information including the relationships and conflictions between the objec-

tives (such information is very important for choosing the weights for the weighted method).

Specifically, an example is shown in [9] that the weighted method fails for a large range of

weights which lead to unbounded weighted objective, but a descent method works with any

initial point.

For scalar optimization problems, there are many works on the convergence rate of the gra-

dient descent method with different stepsize strategies (e.g., [2, 4, 15]). The gradient descent

method with constant stepsizes enjoys sublinear convergence for unconstrained scalar optimiza-

tion problems with convex smooth objective functions and it enjoys linear convergence for the

case with strongly convex objective functions (Chapter 2 in [14]). In the literature of MOP, it

is proved that the gradient descent method converges to a weak Pareto optimum under stan-

dard assumptions [7, 10]. Nevertheless, there is little research on the convergence rate of the

gradient descent method for MOP. In [3], the authors pointed out that the convergence rate of

the gradient descent method for MOP with strongly convex quadratic objectives is related to

the ratio of the largest and the smallest eigenvalues of all Hessian matrices. However, there is

no further analysis for the general case with convex objectives.

In this paper, we firstly analyze the convergence rate of the gradient descent method with

constant stepsizes for MOP. More precisely, we establish the sublinear convergence of the

method for unconstrained MOP with convex and smooth objective functions. The rate is

further strengthened to be linear convergence if the objective functions are strongly convex.

Then we generalize the convergence results for the case of the Armijo line search.

The paper is organized as follows. Section 2 gives some definitions, assumptions and propo-

sitions related to MOP. Specifically, the Pareto optimal condition for MOP and the convexity

for objective functions are included. In Section 3, the key subproblem for the descent direction

in [10] and the framework of the gradient descent method for MOP are introduced. Our main

convergence results are provided in Section 4. Section 5 addresses the generalization of the

convergence results to the Armijo line search. Conclusions and discussions are made in the last

section.

2. Preliminaries

For two vectors x and y, denote the vector inequality x � y as a partial order which is

defined as a componentwise relationship, i.e., xi ≤ yi, ∀i = 1, . . . ,m. Denote x ≺ y as the strict

inequality which is componentwise too. For a vector function F (x) : Rn → R
m, JF (x) ∈ R

m×n

stands for the Jacobian matrix at x, i.e., JF (x)i,j = ∂Fi(x)
∂xj

. We use ‖ ·‖ to denote the standard

Euclidean norm in the real vector space.

Definition 2.1. A continuously differentiable function f(x) is called convex on R
n if for any


