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Abstract

Most iterative algorithms for eigenpair computation consist of two main steps: a sub-

space update (SU) step that generates bases for approximate eigenspaces, followed by

a Rayleigh-Ritz (RR) projection step that extracts approximate eigenpairs. So far the

predominant methodology for the SU step is based on Krylov subspaces that builds or-

thonormal bases piece by piece in a sequential manner. In this work, we investigate block

methods in the SU step that allow a higher level of concurrency than what is reachable

by Krylov subspace methods. To achieve a competitive speed, we propose an augmented

Rayleigh-Ritz (ARR) procedure. Combining this ARR procedure with a set of polynomial

accelerators, as well as utilizing a few other techniques such as continuation and deflation,

we construct a block algorithm designed to reduce the number of RR steps and elevate

concurrency in the SU steps. Extensive computational experiments are conducted in C on

a representative set of test problems to evaluate the performance of two variants of our

algorithm. Numerical results, obtained on a many-core computer without explicit code

parallelization, show that when computing a relatively large number of eigenpairs, the per-

formance of our algorithms is competitive with that of several state-of-the-art eigensolvers.
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1. Introduction

In this paper, we consider to compute k � n eigenpairs corresponding to k largest or

smallest eigenvalues of a given large-scale real symmetric matrix A ∈ Rn×n. Let λ1, λ2, · · · , λn
be the eigenvalues of A sorted in a descending order: λ1 ≥ λ2 ≥ · · · ≥ λn, and q1, . . . , qn ∈ Rn

be the corresponding eigenvectors such that Aqi = λiqi, ‖qi‖2 = 1, i = 1, . . . , n and qTi qj = 0

for i 6= j. The eigenvalue decomposition of A is defined as A = QnΛnQ
T
n , where, for any integer

i ∈ [1, n],

Qi = [q1, q2, . . . , qi] ∈ Rn×i, Λi = diag(λ1, λ2, . . . , λi) ∈ Ri×i, (1.1)
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where diag(·) denotes a diagonal matrix with its arguments on the diagonal. For simplicity, we

also write A = QΛQT where Q = Qn and Λ = Λn.

Most algorithms for computing a subset of eigenpairs of large matrices are iterative in which

each iteration consists of two main steps: a subspace update (SU) step and a projection step.

The subspace update step varies from method to method but with a common goal in finding

a matrix X ∈ Rn×k so that its column space is a good approximation to the k-dimensional

eigenspace spanned by k desired eigenvectors. At present, the predominant methodology for

subspace updating is still Krylov subspace methods, as represented by Lanczos type method-

s [12, 15] for real symmetric matrices. These methods generate an orthonormal matrix X one

(or a few) column at a time in a sequential mode. Along the way, each column is multiplied

by the matrix A and made orthogonal to all the previous columns. In contrast to Krylov

subspace methods, block methods, as represented by the classic simultaneous subspace iter-

ation method [22], carry out the multiplications of A to all columns of X at the same time

in a batch mode. As such, block methods generally demand a lower level of communication

intensity. Once X is obtained and orthonormalized, the projection step aims to extract from

X a set of approximate eigenpairs (see more details in Section 2) that are optimal in a sense.

For the projection step often the method of choice is the Rayleigh-Ritz (RR) procedure. More

complete treatments of iterative algorithms for computing subsets of eigenpairs can be found,

for example, in the books [1, 3, 19,25,30].

The purpose of this work is to construct and test a framework for block algorithms that can

efficiently, reliably and accurately compute a relatively large number of exterior eigenpairs of

large-scale matrices. The algorithm framework is constructed to take advantages of multi/many-

core or parallel computers, although a study of parallel scalability itself will be left as a future

topic. It appears widely accepted that a key property hindering the competitiveness of block

methods is that their convergence can become intolerably slow when decay rates in relevant

eigenvalues are excessively flat. A central task of our algorithm construction is to rectify this

issue of slow convergence.

Our framework starts with an outer iteration loop that features an enhanced RR step called

the augmented Rayleigh-Ritz (ARR) projection which can provably accelerate convergence

under mild conditions. For the SU step, we consider two block iteration schemes whose com-

putational cost is dominated by block SpMVs (the sparse matrix A multiplying a vector): (i)

the classic power method applied to multiple vectors without periodic orthogonalization, and

(ii) a recently proposed Gauss-Newton method. For further acceleration, we apply our block

SU schemes to a set of polynomial accelerators, say ρ(A), aiming to suppress the magnitudes of

ρ(λj) where λj ’s are the unwanted eigenvalue of A for j > k. In addition, a deflation scheme is

utilized to enhance the algorithm’s efficiency. Some of these techniques have been studied in the

literature over the years (e.g. [24,34] on polynomial filters), and are relatively well understood.

In practice, however, it is still a nontrivial task to integrate all the aforementioned components

into an efficient and robust eigensolver. For example, an effective use of a set of polynomial

filters involves the choice of polynomial types and degrees, and the estimations of intervals in

which eigenvalues are to be promoted or suppressed. There are quite a number of choices to be

made and parameters to be chosen that can significantly impact algorithm performance.

Specifically, our main contributions are summarized as follows.

1. The augmented Rayleigh-Ritz (ARR) procedure proposed in [33] is carefully implemented

and extensively evaluated in numerical experiments. Our ARR provably speeds up con-

vergence without increasing the block size of the iterate matrix X in the SU step (thus


