PIECEWISE SPARSE RECOVERY VIA PIECEWISE INVERSE SCALE SPACE ALGORITHM WITH DELETION RULE

Yijun Zhong and Chongjun Li
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
Email: zhongyijun@mail.dlut.edu.cn, chongjun@dlut.edu.cn

Abstract

In some applications, there are signals with piecewise structure to be recovered. In this paper, we propose a piecewise ISS (P_ISS) method which aims to preserve the piecewise sparse structure (or the small-scaled entries) of piecewise signals. In order to avoid selecting redundant false small-scaled elements, we also implement the piecewise ISS algorithm in parallel and distributed manners equipped with a deletion rule. Numerical experiments indicate that compared with aISS, the P_ISS algorithm is more effective and robust for piecewise sparse recovery.

Mathematics subject classification: 90C25, 94A12.
Key words: Inverse scale space, Piecewise sparse, Sparse recovery, Small-scaled entries.

1. Introduction

In this paper, we consider recovering a sparse signal \(x^* \in \mathbb{R}^n \) from its noisy linear measurements

\[
\mathbf{b} = A\mathbf{x}^* + \mathbf{e},
\]

where \(\mathbf{b} \in \mathbb{R}^m \) is a measurement vector, \(A \in \mathbb{R}^{m \times n} \) is a measurement matrix, and \(\mathbf{e} \in \mathcal{N}(0, \sigma^2 \mathbf{I}_n) \) is Gaussian noise. The sparse vector \(x^* \) has \(s \leq m < n \) nonzero entries. A widely used method to perform this reconstruction is the Basis Pursuit, i.e., to solve the following minimization problem

\[
\min_\mathbf{x} \| \mathbf{x} \|_1, \quad \text{s.t.} \ A\mathbf{x} = \mathbf{b}.
\]

The key of recovering a signal in this setting is to find the support of the signal, i.e., find the set \(S \) satisfying \(\text{supp}(x^*) = S \), it is named as “exact support recovery”. In some applications, the signal is indeed “piecewise sparse”. For example, the problem of the decomposition of texture part and cartoon part of image in [20], i.e., \(\mathbf{b} = A_n\mathbf{x}_n + A_t\mathbf{x}_t \) where \(n \) and \(t \) represent the cartoon and texture. It is assumed that both parts can be represented in some given dictionaries, thus \(\mathbf{x}_n \) and \(\mathbf{x}_t \) are two sparse vectors. The coefficient vector \(\mathbf{x} = (\mathbf{x}_n^T, \mathbf{x}_t^T)^T \) is “piecewise” sparse vector. Another example is the problem of reconstructing a surface from scattered data in approximation space \(\mathcal{H} = \bigcup_{j=1}^N H_j \), where \(H_j \subseteq H_{j+1} \) are principal shift invariant (PSI) spaces generated by a single compactly supported function [18], the fitting surface is \(g = \sum_{i=1}^N g_i, \ g_i \in H_i \) with \(g_i = \sum_{j=1}^{n_i} c_j^i \phi_j^i \). The coefficients \(\mathbf{c} = (\mathbf{c}^1, \ldots, \mathbf{c}^N)^T \) (by \(N \)

1) the corresponding author.

* Received June 26, 2017 / Revised version received March 7, 2018 / Accepted October 23, 2018 / Published online May 27, 2019 /
pieces \(c^i = (c_1^i, \ldots, c_n^i)^T \) is the vector to be determined. Due to the property of PSI spaces, the coefficients to be determined by \(l_1 \) minimization in [18] are “piecewise” sparse structured, i.e., each \(c^i \in \mathbb{R}^n \) is a sparse vector in \(H_i \).

To be general, we recover a sparse signal \(x = (x_1^T, \ldots, x_N^T)^T \) which is piecewise sparse structured by a partition of support set \(S = (S_i)_{i=1}^N \). Denote the corresponding partition of \(D = \{1, \ldots, n\} \) as \(D = (D_i)_{i=1}^N \). It is clear that \(S_i \subseteq D_i \). Then we recover \(N \) sub-signals \(x^i (i = 1, \ldots, N) \) simultaneously. We call this type of signal as “piecewise sparse” vector, denoted by \((s_1, \ldots, s_N) \)-sparse vector. According to the piecewise structure of the signal \(x \), the measurement matrix \(A \) is also structured as \(A = [A_1, \ldots, A_N] \) where \(A_i \in \mathbb{R}^{m \times n_i} \). Then the linear measurements (1.1) can be rewritten as

\[
b = \sum_{i=1}^{N} A_i x_i^* + e.
\]

Based on this, we provide the definition of piecewise sparse vector:

Definition 1.1. Suppose the \(m \)-sample vector \(b \) is the linear superposition of \(N \) components with some additive noise,

\[
b = \sum_{i=1}^{N} b_i + e. \tag{1.3}
\]

Furthermore, assume that each \(b_i \) can be sparsely represented in a basis \(A_i \), i.e.,

\[b_i = A_i x_i, \quad i = 1, \ldots, N,
\]

where \(x_i \) is a sparse vector. We define the vector \(x = (x_1^T, \ldots, x_N^T)^T \) as a piecewise sparse vector. In particular, if the piecewise sparsity is provided, i.e., number of nonzero entries of \(x_i \) is \(s_i \) for each \(i \), then we denote the piecewise sparse vector \(x = (x_1^T, \ldots, x_N^T)^T \) as \((s_1, \ldots, s_N) \)-piecewise sparse vector.

![Fig. 1.1. Example of block sparse vector.](image_url)

Remark 1.1. It is necessary to claim that the piecewise sparse vector is quite different from the block sparse vector mentioned in [14–16, 26]. A block \(s \)-sparse vector \(x = (x^T[1], \ldots, x^T[N])^T \) is assumed to have at most \(s \) blocks with nonzero entries while each block \(x[l] \) \((l = 1, \ldots, N)\) is not necessary sparse. Furthermore, a block sparse vector is not necessary sparse. See the example in [16] (Fig. 1.1). In this example, 2 nonzero blocks out of 100 blocks correspond to 200 nonzero elements out of 298 elements. A piecewise sparse vector \(x = (x_1^T, \ldots, x_N^T)^T \) is partitioned into \(N \) components and it is assumed that every \(x_i \in \mathbb{R}^{n_i} \) containing nonzero entries is sparse. See the following example in Fig. 1.2, there are 100 parts are each part has one nonzero element. It is clear that a piecewise sparse vector must be a sparse vector in general meaning.

Remark 1.2. Note that the sub-vectors \(x_i^* \) \((i = 1, \ldots, N)\) in equation \(b^* = \sum_{i=1}^{N} A_i x_i^* + e \) are correlated to each other, thus these sub-vectors \(x_i^* \) \((i = 1, \ldots, N)\) cannot be recovered independently.