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Abstract. A fast time two-mesh finite element algorithm using coarse and fine meshes

is applied to the nonlinear Allen-Cahn equation. The stability and convergence of the

method are studied and detailed error estimates are provided. Numerical examples

confirm the theoretical results. Traditional Galerkin finite element and time two-mesh

finite element methods are compared with respect to CPU time, accuracy and coarsening

processing. Numerical experiments show the efficiency and effectiveness of the fast

algorithm proposed.
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1. Introduction

The Allen-Cahn equation is used to model phase separation [1], microstructure evolu-

tion [5, 34], dendritic crystal growth [29], multiphase incompressible flows [24, 27], the

impact of a droplet on a solid surface [4], image inpainting [2,9], motion by meaning cur-

vature flow [3,11], crystal growth [6,10,15,16,26,33], and phase-field modeling of tumor

growth [28].

Numerical methods are an important tool to study the dynamics of the systems de-

scribed by the Allen-Cahn equation, but its discretisation meets difficulties because of the

presence of the second-order differential operator. Nevertheless, a number of efficient nu-

merical approaches developed recently, includes finite difference schemes inheriting the-

oretical energy stability [31], finite difference and spectral methods on rectangular re-

gions [7,12,17,18,21,30] and general domains of complex geometries [8], discontinuous

Galerkin method [14], adaptive mesh refinement [25] and moving meshes method [13].

Lee and Kim [20] discussed an efficient and accurate numerical algorithm based on an op-

erator splitting technique combined with a linear geometric multigrid method. Layton [19]
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introduced two-level methods, which first derive approximate solutions of nonlinear equa-

tions in the coarse-level subspaces and then in the fine-level ones. Two-level methods

achieve a better accuracy with smaller CPU time. Recently, Liu et al. [23] proposed a fast

TT-M FE algorithm for time fractional water wave model. It is developed to deal with

the time-consuming issue of nonlinear iterations used in standard nonlinear Galerkin finite

element (FE) methods.

The time two-mesh (TT-M) finite element algorithm consists of three main steps:

1. Solving a nonlinear FE system on a coarse time mesh by the Newton iterative method.

2. Interpolating solutions on time fine mesh by using the numerical solutions obtained

in the first step.

3. Solving the linearised FE system by the interpolation solution on a fine time mesh.

The TT-M FE algorithm [23] is accurate and saves computation time. Yin [35] applied this

algorithm to the nonlinear space fractional Allen-Cahn equation.

Here we deal with the Allen-Cahn equation

ut − ǫ
2
∆u+ f (u) = 0, (z, t) ∈ Ω× (0, T ],

u(z, t) = 0, (z, t) ∈ ∂Ω× (0, T ],

u(z, 0) = u0(z), z ∈ Ω,

(1.1)

where Ω ∈ R2, ut = ∂ u/∂ t , ǫ is a given parameter, and the function f is usually specified to

be u3−u. Let us recall that u is labelled as the phase-variable and reflects the concentration

of one of two substances in a mixture.

The main goal of this work is to accelerate numerical calculations and here we follow

the ideas of [23]. Besides, the time derivative is approximated by a second-order scheme

[22, 32]. The fast algorithm used here can be extended to the nonlinear Cahn-Hilliard

equation and will be published elsewhere.

The rest of the paper is organised as follows. In Section 2 we recall some auxiliary

results. Section 3 describes a fast TT-M FE algorithm with the second-order θ scheme.

Section 4 deals with the stability of the scheme proposed. In Section 5 we analyse the

errors of the method. Section 6 presents the results of numerical experiments and our

conclusions are in Section 7.

2. Theoretical Preparations

Let Du refer to the first order derivative of u with respect to x . We set

(u, v) :=

∫

Ω

u(x)v(x)d x , ‖u‖ := ‖u‖L2(Ω),

|u|H1 :=

�∫

Ω

|Du|2d x

�1/2

, ‖u‖H1 :=

�∫

Ω

|u|2d x +

∫

Ω

|Du|2d x

�1/2

.


