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Abstract. In this paper, we analyze an interior penalty discontinuous Galerkin method
for solving the coupled Cahn–Hilliard and Navier–Stokes equations. We prove uncon-
ditional unique solvability of the discrete system, and we derive stability bounds with-
out any restrictions on the chemical energy density function. The numerical solutions
satisfy a discrete energy dissipation law and mass conservation laws. Convergence of
the method is obtained by obtaining optimal a priori error estimates.
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1 Introduction

The Cahn–Hilliard–Navier–Stokes system strikes an optimal balance in terms of thermo-
dynamical rigor and computational efficiency for modeling immiscible two-phase flow.
The model that belongs to the class of diffuse interface or phase-field methods, has been
used in physics, chemistry, biology, and engineering fields. In recent years, driven by the
major developments of numerical algorithms and by increased availability of computa-
tional resources, direct numerical simulation of Cahn–Hilliard–Navier–Stokes equations
has become increasingly popular [1, 14, 16, 25, 27, 30].

This paper is devoted to the numerical analysis of an interior penalty discontinuous
Galerkin method for the coupled Cahn–Hilliard and Navier–Stokes equations in two and
three dimensional domains. The class of discontinuous Galerkin methods belongs to the
class of locally mass conservative numerical methods. In addition, local mesh refinement
with hanging nodes and high order approximation are easily handled by these meth-
ods. The unknowns are approximated by discontinuous piecewise polynomials. For the
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Cahn–Hilliard–Navier–Stokes system, the unknowns are the order parameter, the chem-
ical potential, the fluid velocity and pressure. We prove existence and uniqueness of the
discrete solution and we show stability of the scheme for any chemical energy density
function. At the continuous level, the physical quantities satisfy an energy dissipation
law, and at the discrete level, we show the energy decreases with time. Similarly, the
solutions satisfy global and local mass conservation because of the use of discontinu-
ous approximation spaces. A priori error estimates show convergence of the numerical
method with optimal rates.

The convergence analysis of continuous finite element method for the Cahn–Hilliard–
Navier–Stokes model has been extensively investigated. In the work of Feng [12], con-
tinuous P2−P0 elements are used for the approximation of the velocity and pressure
whereas continuous Pr elements, for r≥1 are used for the approximation of the chemical
potential and order parameter. Convergence of the solution is obtained via a compact-
ness argument. Kay, Styles, and Welford in [24] analyze semi-discrete and fully discrete
finite element schemes in two-dimensional computational domains. Under a CFL-like
condition, they obtain a priori error estimates for the semi-discrete method and a con-
vergence proof based on a compactness argument for the fully discrete scheme. Diegel,
Wang, Wang, and Wise in [9] analyze a second order in time mixed finite element method,
based on Crank–Nicolson method. Continuous Pr elements are used for the chemical po-
tential, order parameter and pressure whereas continuous Pr+1 are used for the velocity
with any positive integer r. The work contains unconditional energy stability and optimal
error estimates. In [5, 22], a projection method is used to handle the Navier–Stokes equa-
tions. Han and Wang introduce a second order in time method and show unconditional
unique solvability of the algorithm. The work [22] does not contain any theoretical proof
of convergence of the solution. Cai and Shen obtain unconditional unique solvability, de-
rive error estimates and show a convergence analysis based on a compactness argument.
In [5], both chemical potential and order parameter are approximated by continuous P2

elements and the velocity and pressure are approximated by a stable pair of finite element
spaces. In addition of using continuous finite elements in space, all the works mentioned
above assume a special form of chemical energy density, namely a double-well potential,
also called Ginzburg–Landau potential. The coupling term in the momentum equation
of the Navier–Stokes system may take several forms, that are equivalent at the continu-
ous level but that yield different numerical schemes at the discrete level. We note that
in [5, 9, 12], the coupling term is the product of the chemical potential and the gradient
of the order parameter. In the other works [22, 24] as well as in our present work, the
coupling term is the product of the order parameter and the gradient of the chemical
potential.

To the best of our knowledge, this work is the first theoretical analysis for a fully
discrete interior penalty discontinuous Galerkin scheme of the Cahn–Hilliard–Navier–
Stokes system. However, the literature on numerical methods for solving the Cahn–
Hilliard equation (resp. the Navier–Stokes equations) is abundant. Finite element meth-
ods and interior penalty discontinuous Galerkin methods have been employed for each


