doi: 10.4208/jpde.v33.n2.1 June 2020

Multiple Solutions for a Fractional *p*-Laplacian Equation with Concave Nonlinearities

PEI Ruichang*

School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741000, China.

Received 19 August 2019; Accepted 28 January 2020

Abstract. We investigate a fractional *p*-Laplacian equation with right-hand-side nonlinearity which exhibits (p-1)-sublinear term of the form $\lambda |u|^{q-2}$, q < p (concave term), and a continuous term f(x,u) which is respectively (p-1)-superlinear or asymptotically (p-1)-linear at infinity. Some existence results for multiple nontrivial solutions are established by using variational methods combined with the Morse theory.

AMS Subject Classifications: 34A08, 35Q40, 58E05

Chinese Library Classifications: O175.23

Key Words: Fractional *p*-Laplacian problems; Morse theory; concave nonlinearities; existence and multiplicity of solutions.

1 Introduction

For $p \in (1,\infty)$, $s \in (0,1)$ and smooth functions u, define

$$(-\Delta)_p^s u(x) = 2\lim_{\epsilon \searrow 0} \int_{\mathbb{R}^N \setminus B_{\epsilon}(x)} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{N+sp}} dy, \qquad x \in \mathbb{R}^N.$$

This definition is consistent, up to a normalization constant depending on *N* and *s*, with the usual definition of the linear fractional Laplacian $(-\Delta)^s$ when p=2. In recent years, many authors have focused on the study of these non-local operators of elliptic type, not only the pure mathematical research but also concrete real-world applications, see [1–5] and the references therein. For an elementary introduction of the properties of the fractional Sobolev space, we refer the interested reader to [6]. There is currently a rapidly growing literature on problems involving these nonlocal operators. In particular, the

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email address:* prc2110163.com (R. C. Pei)

eigenvalue problems associated with $(-\Delta)_p^s u$ was studied in [7,8], regularity theory in [9,10], and existence theory in the subcritical polynomial case in [11–15].

Following the direction, in this paper we consider the problem

$$\begin{cases} (-\Delta)_p^s u(x) = \lambda |u|^{q-2} u + f(x, u) & \text{in } \Omega, \\ u = 0 & \text{in } \mathbb{R}^N \setminus \Omega, \end{cases}$$
(1.1)

where Ω be bounded domain in \mathbb{R}^N with smooth boundary, 1 < q < p, λ is a real parameter and $f \in C(\bar{\Omega} \times \mathbb{R}, \mathbb{R})$. Here, we briefly introduce the variation formulation of problem (1.1). Let $\Omega \subset \mathbb{R}^N$ be stated as above, and for all $1 \le r \le \infty$ denote by $|\cdot|_r$ the norm of $L^r(\Omega)$. Moreover, let $0 < s < 1 < p < \infty$ be real numbers, and the fractional critical exponent be defined as $p^* = \frac{Np}{N-sp}$ if sp < N and $p^* = \infty$ if $sp \ge N$. The Gagliardo seminorm is defined for all measurable function $u : \mathbb{R}^N \to \mathbb{R}$ by

$$[u]_{s,p} = \left(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} dx dy \right)^{\frac{1}{p}}.$$

Define the fractional Sobolev space

$$W^{s,p}(\mathbb{R}^N) = \{ u \in L^p(\mathbb{R}^N) : u \text{ measurable}, [u]_{s,p} < \infty \},\$$

endowed with the norm

$$||u||_{s,p} = (||u||_p^p + [u]_{s,p}^p)^{\frac{1}{p}}.$$

Our problem is set in the closed linear subspace

$$X = \{ u \in W^{s,p}(\mathbb{R}^N) : u(x) = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega \},\$$

which can be equivalently renormed by setting $\|\cdot\| = [\cdot]_{s,p}$ (see Theorem 7.1 in [6]). We know that $(X, \|\cdot\|)$ is a uniformly convex Banach space and that the embedding $X \hookrightarrow L^r(\Omega)$ is continuous for all $1 \le r \le p^*$ and compact for all $1 \le r < p^*$ (see Theorem 6.5, 7.1 in [6]). The dual space of $(X, \|\cdot\|)$ is denoted by $(X^*, \|\cdot\|_*)$. The (p-1)-homogeneous nonlinear operator $A: X \to X^*$ is defined for all $u, \varphi \in X$ by

$$\langle A(u),\varphi\rangle = \int_{\mathbb{R}^{2N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\varphi(x)-\varphi(y))}{|x-y|^{N+sp}} \mathrm{d}x\mathrm{d}y.$$

Thus, a weak solution of problem (1.1) is a function $u \in X$ such that

$$\langle A(u), \varphi \rangle = \lambda \int_{\Omega} |u|^{q-2} u \varphi dx + \int_{\Omega} f(x, u) \varphi dx$$
 (1.2)

for all $\varphi \in X$. Since *X* is uniformly convex, by Proposition 1.3 in [16], *A* satisfies the following compactness condition: If (u_n) is a sequence in *X* such that $u_n \rightharpoonup u$ in *X* and $\langle A(u_n), u_n - u \rangle \rightarrow 0$, then $u_n \rightarrow u$ in *X*.