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Abstract

This paper studies the two-stage fourth-order accurate time discretization [J.Q. Li and

Z.F. Du, SIAM J. Sci. Comput., 38 (2016)] and its application to the special relativis-

tic hydrodynamical equations. Our analysis reveals that the new two-stage fourth-order

accurate time discretizations can be proposed. With the aid of the direct Eulerian GRP

(generalized Riemann problem) methods and the analytical resolution of the local “quasi

1D” GRP, the two-stage fourth-order accurate time discretizations are successfully imple-

mented for the 1D and 2D special relativistic hydrodynamical equations. Several numer-

ical experiments demonstrate the performance and accuracy as well as robustness of our

schemes.
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1. Introduction

The relativistic hydrodynamics (RHD) plays the leading role in astrophysics and nuclear

physics etc. The RHDs is necessary in situations where the local velocity of the flow is close to

the light speed in vacuum, or where the local internal energy density is comparable (or larger)

than the local rest mass density of fluid. The paper is concerned with developing higher-order

accurate numerical schemes for the 1D and 2D special RHDs. The d-dimensional governing

equations of the special RHDs is a first-order quasilinear hyperbolic system. In the laboratory

frame, it can be written into the divergence form

∂U

∂t
+

d∑
i=1

∂F i(U)

∂xi
= 0, (1.1)

where d = 1 or 2, and U and F i(U) denote the conservative vector and the flux in the xi-

direction, respectively, defined by

U = (D,m, E)T , F i(U) = (Dvi, vim + pei,mi)
T , i = 1, · · · , d, (1.2)

with the mass density D = ρW , the momentum density (row) vector m = DhWv, the energy

density E = DhW − p, and the row vector ei denoting the i-th row of the unit matrix of size
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2. Here ρ is the rest-mass density, vi denotes the fluid velocity in the xi-direction, p is the gas

pressure, W = 1/
√

1− v2 is the Lorentz factor with v :=
(
v2

1 + · · ·+ v2
d

)1/2
, h is the specific

enthalpy defined by

h = 1 + e+
p

ρ
,

with units in which the speed of light c is equal to one, and e is the specific internal energy.

Throughout the paper, the equation of state (EOS) will be restricted to the Γ-law

p = (Γ− 1)ρe, (1.3)

where the adiabatic index Γ ∈ (1, 2]. The restriction of Γ ≤ 2 is required for the compressibility

assumptions and the causality in the theory of relativity (the sound speed does not exceed the

speed of light c = 1).

The RHD equations (1.1) are highly nonlinear so that their analytical treatment is extremely

difficult. Numerical computation has become a major way in studying RHDs. The pioneering

numerical work can date back to the Lagrangian finite difference code via artificial viscosity

for the spherically symmetric general RHD equations [19, 20]. Multi-dimensional RHD equa-

tions were first solved in [26] by using the Eulerian finite difference method with the artificial

viscosity technique. Later, modern shock-capturing methods were extended to the RHD (in-

cluding RMHD) equations. Some representative methods are the HLL (Harten-Lax-van Leer)

scheme [6], HLLC (HLLC contact) schemes [12,21], Riemann solver [2], approximate Riemann

solvers based on the local linearization [15,16], second-order GRP (generalized Riemann prob-

lem) schemes [30,37,38], third-order GRP scheme [36], locally evolution Galerkin method [29],

discontinuous Galerkin (DG) methods [39,40], gas-kinetic schemes (GKS) [4,23], adaptive mesh

refinement methods [1, 13], and moving mesh methods [10, 11] etc. Recently, the higher-order

accurate physical-constraints-preserving (PCP) WENO (weighted essentially non-oscillatory)

and DG schemes were developed for the special RHD equations [24, 31, 33]. They were built

on studying the admissible state set of the special RHDs. The admissible state set and PCP

schemes of the special ideal RMHDs were also studied for the first time in [32], where the im-

portance of divergence-free fields was revealed in achieving PCP methods. Those works were

successfully extended to the special RHDs with a general equation of state [33, 34] and the

general RHDs [28].

In comparison with second-order shock-capturing schemes, the higher-order methods can

provide more accurate solutions, but they are less robust and more complicated. For most

of the existing higher-order methods, the Runge-Kutta time discretization is usually used to

achieve higher order temporal accuracy. For example, a four-stage fourth-order Runge-Kutta

method (see e.g. [40]) is used to achieve a fourth-order time accuracy. If each stage of the time

discretization needs to call the Riemann solver or the resolution of the local GRP, then the

shock-capturing scheme with multi-stage time discretization for (1.1) is very time-consuming.

Recently, based on the time-dependent flux function of the GRP, a two-stage fourth-order

accurate time discretization was developed for Lax-Wendroff (LW) type flow solvers, particularly

applied for the hyperbolic conservation laws [18]. Such two-stage LW time stepping method

does also provide an alternative framework for the development of a fourth-order GKS with a

second-order flux function [22].

The aim of this paper is to study the two-stage fourth-order accurate time discretization [18]

and its application to the special RHD equations (1.1). Based our analysis, the new two-

stage fourth-order accurate time discretizations can be proposed. With the aid of the direct


