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Abstract

In this paper, we propose a parareal algorithm for stochastic differential equations

(SDEs), which proceeds as a two-level temporal parallelizable integrator with the Milstein

scheme as the coarse propagator and the exact solution as the fine propagator. The con-

vergence order of the proposed algorithm is analyzed under some regular assumptions.

Finally, numerical experiments are dedicated to illustrate the convergence and the con-

vergence order with respect to the iteration number k, which show the efficiency of the

proposed method.
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1. Introduction

The technique of parallel algorithm attracted more and more attention in the past few years

due to the computational time and memory issues in the solution of large scale problems. The

parallel algorithms in spatial direction is contributed by the domain decomposition method

when the system governed by partial differential equations, see [15] and references therein. For

the time-dependent problem, there have been developed some time parallel techniques, such as

the waveform relaxation methods, the multigrid methods, the diagonalization methods and the

domain decomposition methods (see [8] and references therein).

The parareal algorithm, our focus in the sequel, is a two-level temporal parallelizable inte-

grator, which was proposed firstly in [12] and has gone deep into researching in [8] and references

therein. The general idea of the parareal algorithm is described through a coarse propagator

calculated on a coarse grid with step size ∆T and a fine propagator calculated in parallel on
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each coarse interval with a fine step size ∆t = ∆T/J, where J can be seen as the number of

computer processes. Combining the values of the coarse time grids and the values obtained by

the fine propagator performed the parallel, a new approximation is generated by a prediction

and correction iteration. Roughly speaking, the fine propagator and the coarse propagator

denote the accuracy and efficiency of the parareal algorithm, respectively. In [8] and [12], the

authors pointed out that the error caused by the parareal architecture after a few iterations is

comparable to the error caused by a global use of the fine propagator without iteration. Since

the parareal algorithm was proposed, many efforts have been made to analyze it theoretically

and numerically, which verify the effectiveness of the parareal algorithm for a large various

of problems, including its convergence [4, 20], its stability [2, 18], the potential of long time

simulation [5,7,9] and the other applications of the different models and problems [1,6,13,21].

In the stochastic case, there are very few literatures to consider this problem compared to the

deterministic case. For example, [16] considered the time simulation of the parareal algorithm

of multiscale stochastic chemical kinetics. The authors studied the stability of θ-scheme for a

linear SDE in [19]. In [17], the authors adopted a parallel time integration scheme to track the

trajectories of noisy nonlinear dynamics systems. Recently, the parareal algorithm applied to

stochastic differential equations with conserved quantities was considered in [22], and a parareal

algorithm based on exponential θ-scheme was proposed for the stochastic Schrödinger equation

with weak damping and additive noise in [10].

Different from the deterministic problems, the main difference when applying the parareal

algorithms for SDEs driven by standard Brownian motions, is that the stochastic systems are

less regular. One may not get the optimal convergence rate of the parareal algorithm for the

stochastic case following the procedure of the deterministic case. The author in [3] considered

the parareal algorithm when the explicit Euler scheme is chosen as the coarse propagator and the

exact solution as the fine propagator. The optimal rate k(α∧3−1)
2 is deduced taking advantages

of the independency between the increments of Brownian motions, where α is variant with

different drift and diffusion coefficients and α = 2 for general coefficients function. Similar

idea with [3], we propose a parareal algorithm based on the explicit Milstein scheme as the

coarse propagator and the exact solution as the fine propagator in this paper. The motivation

of this work is hope to improve the convergence order when using the higher order numerical

scheme for the coarse propagator. Based on the form of the Itô Taylor expansion and the tool

of stochastic analysis, we obtain the uniform convergence of the proposed parareal algorithm

with convergence order k in the sense of mean square when the Milstein scheme as the coarse

propagator is order 1. From the result of the convergence order, we find that it can improve

the order of the parareal algorithm when using the higher order coarse propagator compared

to [3]. Numerical simulations are investigated to verify the effectiveness and convergence of the

algorithm for a linear and nonlinear SDEs case.

The rest of this paper is organized as follows. In Section 2, we review the process of the

parareal algorithm and stochastic Taylor expansion and then propose the parareal algorithm

based on the Milstein scheme. In Section 3, the convergence result in the sense of mean square

is analyzed. Two numerical experiments are given in Section 4 to verify our theoretical results.

2. Preliminary

Let (Ω, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0, which is a

nondecreasing right continuous family of σ sub-algebra of F , and where F0 contains all the P-


