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Abstract

Quad-curl equations with Navier type boundary conditions are studied in this paper.

Stable order reduced formulations equivalent to the model problems are presented, and

finite element discretizations are designed. Optimal convergence rates are proved.
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1. Introduction

Let Ω ⊂ R3 be a contractable polyhedron domain, Γ = ∂Ω be the boundary of Ω, and n be

the outer unit normal vector of ∂Ω. As usual, we use ∇ for the gradient operator, and denote

div = ∇· and curl = ∇×. In this paper, we study the quad-curl problem of the type

(A)















(∇×)4 u
∼
= f

∼
, in Ω;

∇ · u
∼
= 0, in Ω;

u
∼
×n = (∇×)2 u

∼
×n = 0

∼
, on ∂Ω,

(1.1)

where div f
∼
= 0, and of the variant type

(B)







(∇×)4 u
∼
+ u

∼
= f

∼
, in Ω;

u
∼
×n = (∇×)2 u

∼
×n = 0

∼
, on ∂Ω.

(1.2)

For (1.2), it is not necessary that div f
∼
= 0; however, when this is the case, then div u

∼
= 0.

The quad-curl operator (∇×)4 arises in models for a wide variety of domains in applied

sciences, including elasticity, inverse electromagnetic scattering theory, and magnetohydrody-

namics (MHD). In elasticity, the operator is used to model the effect of the couple stress

(c.f. [22, 28]). In inverse electromagnetic scattering theory (c.f. [9, 10]), (∇×)4 appears in the

computation of the transmission eigenvalue. In MHD (c.f. [32]), (∇×)4B is involved in the
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resistive system, where B is the magnetic field as a primary variable. The quad-curl operator

is also used as the principal part of the Electron MHD model; see Equation (1) of [11].

The mathematical modeling and numerical analysis of the quad-curl operator has been

attracting interest from many researchers. The earlier results presented by the community

focus on the Dirichlet-type boundary conditions of the types u
∼
×n = (∇ × u

∼
) × n = 0

∼
and

u
∼
×n = ∇ × u

∼
= 0

∼
. The fourth order operator (∇×)4 establishes a very large kernel space,

which results in a complex intrinsic structure. More recently, Nicaise [21] proves that the

solution of quad-curl equation does not always belong to H3 on polyhedrons with H−1 data

f
∼
, and singularities can be expected in general; Zhang [29] establishes the H2 regularity under

the assumptions of convex domains with L2 input data.

The community has also explored alternative approaches for the discretization of the quad-

curl problem. With a focus on the Dirichlet boundary conditions, both primal and reduced

schemes have been proposed to address the complexity issue. Primal schemes include the pro-

posals by Zheng-Hu-Xu [32] using nonconforming elements and by Hong-Hu-Shu-Xu [19] using

standard high order Nédélec’s elements within the framework of the discontinuous Galerkin

method. Reduced schemes, also known as mixed element schemes, have received substantial

attention. A mixed element scheme by Sun [25] suggests solving the original problem using

existing edge elements. The scheme can be viewed as an analogue of the Ciarlet-Raviart’s

scheme [12] for the biharmonic equation in the context of the quad-curl problem; the equiva-

lence to the primal formulation can be proved under additional assumptions on the regularity

of the solution. Zhang [29] has proposed schemes based on the underlying de Rham complex

structure for two variants of the quad-curl equations; their equivalence to the primal formulation

can be proved without additional assumptions. The intrinsic topological characteristic, namely

the norm used, is clearly presented and accompanied with the stability analysis. These results

are used to design the optimal solvers/preconditioners for the scheme. It is worth remarking

that, in [29], it is proved that the boundary value problems associated with the two Dirichlet

types of boundary conditions are equivalent to each other. Very recently, the decomposition

of the quad-curl problem in two dimensions has been presented by Brenner-Sun-Sung [8]; the

multiply-connected characteristic of the domain is considered. Meanwhile, a coupled order

reduced formulation for the quad-curl problem is also introduced in Zhang [30]. This work

presents a general framework for reducing problems based on non-orthogonal decompositions;

a specific example is presented for reducing quad-curl problems.

In contrast to the research that focuses on the Dirichlet boundary conditions, in this paper,

we investigate the quad-curl equation with the Navier type boundary condition as in (1.1) and

(1.2), and propose novel order reduced schemes. The motivation for this research is two-fold.

First, the Navier boundary condition is important, as it can be found in various mechanical

and physical systems. For example, according to the Maxwell system for a smooth electric field

E
∼
, which satisfies a wave-form equation, it is natural to suppose (∇×)2E

∼
×n = 0

∼
, provided

E
∼
×n = 0

∼
is imposed as a boundary condition. Second, practically and theoretically, boundary

conditions in general play a significant role in the study of the quad-curl equation; they provide

a meaningful foundation from which to explore order reduced schemes.

Indeed, given the two kinds of Dirichlet type boundary conditions u
∼
×n = (∇× u

∼
)× n = 0

∼

and u
∼
×n = ∇×u

∼
= 0

∼
are equivalent on general polygons, the solution for this kind of boundary

value problem u
∼

can be expected for higher regularity, in particular for ∇ × u
∼

∈ H
∼

1(Ω).


