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Abstract

The purpose of this paper is to analyze an efficient method for the solution of the

nonlinear system resulting from the discretization of the elliptic Monge-Ampère equation

by a C
0 interior penalty method with Lagrange finite elements. We consider the two-grid

method for nonlinear equations which consists in solving the discrete nonlinear system on a

coarse mesh and using that solution as initial guess for one iteration of Newton’s method on

a finer mesh. Thus both steps are inexpensive. We give quasi-optimal W 1,∞ error estimates

for the discretization and estimate the difference between the interior penalty solution

and the two-grid numerical solution. Numerical experiments confirm the computational

efficiency of the approach compared to Newton’s method on the fine mesh.
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1. Introduction

In this paper, we prove the convergence of a two grid method for solving the nonlinear

system resulting from the discretization of the elliptic Monge-Ampère equation

det(D2u) = f in Ω, u = g on ∂Ω, (1.1)

with a version of the C0 interior penalty discretization proposed in [5]. The domain Ω is

assumed to be a convex polygonal domain of R2 and (1.1) is assumed to have a strictly convex

smooth solution u ∈ Ck+1(Ω) for an integer k ≥ 3. The function f ∈ Ck−1(Ω) is given and

satisfies f ≥ c0 for a constant c0 > 0 and the function g ∈ C(∂Ω) is also given and assumed to

extend to a Ck+1(Ω) function G. In (1.1), D2u =
(

∂2u/(∂xi∂xj)
)

i,j=1,2
is the Hessian matrix

of u and det denotes the determinant operator. Let Vh ⊂ H1(Ω) denote the Lagrange finite

element space of degree k ≥ 3. Let Dv denote the gradient of the function v. Recall that
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cofD2v denotes the matrix of cofactors of D2v. The C0 interior penalty discretization can be

written in abstract form as: find uh ∈ Vh such that uh = gh on ∂Ω and

A(uh, φ) = 0, ∀φ ∈ Vh ∩H1
0 (Ω).

Here gh denotes the canonical interpolant in Vh of a continuous extension of g and A is defined

in (3.1) below. The discretization has the property that if we denote by A′(u; v, φ) the Fréchet

derivative evaluated at u of the mapping v → A(v, φ), then

A′(u; v, φ) =

∫

Ω

(

(cof D2u)Dv
)

·Dφdx, (1.2)

which gives the weak form of a standard linear elliptic operator. We exploit this property to

give quasi-optimal W 1,∞ error estimates, and the convergence of a two-grid numerical scheme

for solving the discrete nonlinear system. Numerical experiments confirm the computational

efficiency of the two-grid method compared to Newton’s method on the fine mesh. Two-grid

methods were initially analyzed in [13] for quasi-linear problems, and (1.1) is a fully nonlinear

equation. The numerical results in [11] used a two-grid method.

Monge-Ampère type equations with smooth solutions on polygonal domains appear in many

problems of practical interest. For example they appear in the study of von Kármán model

for plate buckling [6]. In addition, for meteorological applications for which other differential

operators are discretized with a finite element method, it would be advantageous to use a finite

element discretization for the Monge-Ampère operator as well. It is known that when Ω is

strictly convex with a smooth boundary, and with our smoothness assumptions on f and g,

(1.1) has a smooth solution. There are several discretizations for smooth solutions of (1.1).

Provably convergent schemes for non smooth solutions can be used for smooth solutions as

well. However the latter have a low order of approximation for smooth solutions. We refer

to [8] for example for a review. Because the interior penalty term involves the cofactor matrix

of the Hessian, it is very likely that the method proposed in [5] is suitable only for smooth

solutions. It does not seem possible to put it in the framework of approximation by smooth

solutions proposed in [2], where the right hand side of (1.1) is viewed as a measure.

There has been no previous study of multilevel methods for finite element discretizations

of (1.1). A key tool in the proof of convergence of the two-grid method is a W 1,∞ norm

error estimate for k ≥ 3. Such estimates were obtained in [10] for quadratic and higher order

elements on a smooth domain. But the proof therein relies on an elliptic regularity property of

the linearized problem [10, (2.21)]. Unless the domain is a rectangle, we do not expect such an

elliptic regularity property to hold for general polygonal domains considered in this paper.

With the quasi-optimal W 1,∞ error estimates we obtain a new proof of the optimal H1

estimates obtained in [5]. Although these estimates are not new, we include nethertheless the

proof since its ideas are also used in the proof of the convergence of the two-grid method. The

version of the C0 interior penalty discretization proposed in [5] we consider, consists in imposing

the boundary condition through interpolation, instead of weakly with a penalty term. In this

context, as expected, the proof of the H1 estimates is simpler than the one given in [5]. In

particular, no mesh-dependent norms are used.

The two-grid method consists in solving (1.1) on a coarse mesh of size H and using that

solution as initial guess for one iteration of Newton’s method on a finer mesh of size h with

H = hλ, 0 < λ < 1. Thus both steps are inexpensive. We prove that the convergence rate does


