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Abstract

We consider the rank minimization problem from quadratic measurements, i.e., recov-

ering a rank r matrix X ∈ R
n×r from m scalar measurements yi = a⊤

i XX⊤ai, ai ∈

R
n, i = 1, . . . ,m. Such problem arises in a variety of applications such as quadratic re-

gression and quantum state tomography. We present a novel algorithm, which is termed

exponential-type gradient descent algorithm, to minimize a non-convex objective function

f(U) = 1

4m

∑
m

i=1
(yi − a⊤

i UU⊤ai)
2. This algorithm starts with a careful initialization, and

then refines this initial guess by iteratively applying exponential-type gradient descent.

Particularly, we can obtain a good initial guess of X as long as the number of Gaussian

random measurements is O(nr), and our iteration algorithm can converge linearly to the

true X (up to an orthogonal matrix) with m = O (nr log(cr)) Gaussian random measure-

ments.
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1. Introduction

1.1. Problem setup.

Let X ∈ R
n×r be a fixed and unknown matrix with rank(X) = r, and our aim is to recover

X from given quadratic measurements, i.e.,

find X ∈ R
n×r, s.t. yi = a⊤i XX

⊤ai = ‖a⊤i X‖22, i = 1, . . . ,m, (1.1)

where ai = (ai,1, . . . , ai,n) ∈ Rn. This problem is raised in many emerging applications of

science and engineering, such as covariance sketching, quantum state tomography and high

dimensional data streams [7,16,17]. A simple observation is that a⊤i XX
⊤ai = a⊤i XOO

⊤X⊤ai
where O ∈ Rr×r is an orthogonal matrix. We can only hope to recover X up to a right

orthogonal matrix. There exists an orthogonal matrix O∗ ∈ Rr×r such thatXO∗ has orthogonal

column vectors. Hence, throughout the paper we can assume that X has orthogonal column

vectors.

To recover X from given measurements (1.1), we consider the following optimization prob-

lem:

min
U∈Rn×r

f(U) =
1

4m

m
∑

i=1

(yi − ‖a⊤i U‖22)2. (1.2)

The aim of this paper is to develop algorithms to solve (1.2).
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1.2. Related work

1.2.1. Low rank matrix recovery

Rank minimization problem is a direct generalization of compressed sensing [15, 22]. For the

general rank minimization problem, it aims to reconstruct a low rank matrix Q ∈ Rn×n from

incomplete measurements, which can be formulated as the following programming

min
Z∈Rn×n

rank(Z)

subject to tr(AiZ) = yi, i = 1, . . . ,m, (1.3)

where yi = tr(AiQ), Ai ∈ Rn×n, i = 1, . . . ,m. In [26], Xu has proved that in order to guarantee

the solution of (1.3) is Q where Q ∈ Cn×n and rank(Q) ≤ r, the minimal measurement number

m is 4nr − 4r2. Since (1.3) is non-convex, it is challenging to solve it [18]. However, under

a certain restricted isometry property (RIP), this problem can be relaxed to a nuclear norm

minimization problem which is a convex programming and can be solved efficiently [4, 22].

Noting that M := XX⊤ is a low rank matrix, we can recast (1.1) as a rank minimization

problem. This means that we can use the nuclear norm minimization to recover the matrix M

and hence X :

min
Z∈Hn

‖Z‖∗

subject to tr(AiZ) = yi, i = 1, . . . ,m, (1.4)

where Hn := {Q ∈ Rn×n : Q = Q⊤} and Ai = aia
∗
i . Problem (1.4) was studied in [7, 16] with

proving that m ≥ Cnr Gaussian measurements are sufficient to recover the unknown matrix

M = XX⊤ exactly. In [21], Rauhut and Terstiege also consider the case where the measurement

vectors ai, i = 1, . . . ,m are from a tight frame.

1.2.2. Phase retrieval

Under the setting of r = 1, the (1.1) is reduced to phase retrieval problem. Phase retrieval is

to recover an unknown vector from the magnitude of measurements, which means to recover a

signal x ∈ Hn from measurements

yi = |〈ai, x〉|2, i = 1, . . . ,m, (1.5)

where ai ∈ Hn (H = C or R) are sampling vectors. This problem is raised in many imaging

applications due to the limitations of optical sensors which can only record intensity information,

such as X-ray crystallography [14, 19], astronomy [11], diffraction imaging [13, 24]. It has been

proved that m ≥ 4n− 4 Gaussian measurements are sufficient to recover the unknown vector

up to a global phase [8]. In recent years, several different algorithms have been proposed to

solve it [1, 2, 9, 10, 20]. In [3], Candès et al. design Wirtinger flow algorithm for phase retrieval

which solves the following non-convex optimization problem

min
u∈Cn

1

4m

m
∑

i=1

(yi − |a∗i u|2)2 (1.6)

and prove that the algorithm converges to the true signal up to a global phase with high

probability provided the measurement vectors are m = O(n log n) Gaussian measurements.


