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Abstract. We investigate the structure of a large precision matrix in Gaussian
graphical models by decomposing it into a low rank component and a remain-
der part with sparse precision matrix. Based on the decomposition, we pro-
pose to estimate the large precision matrix by inverting a principal orthogonal
decomposition (IPOD). The IPOD approach has appealing practical interpre-
tations in conditional graphical models given the low rank component, and it
connects to Gaussian graphical models with latent variables. Specifically, we
show that the low rank component in the decomposition of the large precision
matrix can be viewed as the contribution from the latent variables in a Gaus-
sian graphical model. Compared with existing approaches for latent variable
graphical models, the IPOD is conveniently feasible in practice where only in-
verting a low-dimensional matrix is required. To identify the number of latent
variables, which is an objective of its own interest, we investigate and justify
an approach by examining the ratios of adjacent eigenvalues of the sample co-
variance matrix. Theoretical properties, numerical examples, and a real data
application demonstrate the merits of the IPOD approach in its convenience,
performance, and interpretability.
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1 Introduction

Exploring how subjects and/or variables are connected to each other in various
systems is one of the most common and important problems in practical applica-
tions. Examples of such investigations are regularly seen in scenarios including
regression analysis, Gaussian graphical models, classification, principal compo-
nent analysis and many more. Investigations of this kind are encountered even
more often in practical applications in recent popular areas such as finance, bi-
ological and medical studies, meteorological and astronomical research, among
others. Because of the general interest on the connections between individuals,
the scale of these investigations can easily grow beyond a practical and manage-
able scope — for example, considering the complexity of possible associations a-
mong human genes. Therefore, parsimonious modeling approaches are critically
important for generating practical, feasible, and interpretable statistical analyses
when exploring the association structures of the target systems in many contem-
porary studies.

For studying the connections between subjects/variables, precision matrix,
the inverse of a covariance matrix, is a crucial device in many statistical analy-
ses including Gaussian graphical models [12], discriminant analysis, dimension
reduction, and investment portfolio analysis. There has been an increasing in-
terest in penalized likelihood approaches for estimating large precision matrices
in recent literature; see, for example, [7, 8, 10, 13, 15–17, 19] and references there-
in. In Gaussian graphical models, the precision matrix has the interpretation that
each of its zero elements implies the conditional independence of the correspond-
ing pair of individuals given the information from all other individuals. In the
corresponding graph consisting of a vertex set and an edge set, such condition-
al independence means that there is no edge between the corresponding pair of
vertices representing the individuals.

With latent variables, analyzing Gaussian graphical models becomes substan-
tially more difficult; see [4] in which a penalized likelihood approach is investi-
gated. More specifically, the interpretation of the graphical model becomes less
clear if the impact of latent variables is not incorporated in the large precision
matrix. Additionally, the unknown number of the latent variables also poses new
challenges, both computationally in optimizing the penalized likelihood function
and practically in developing most appropriate interpretations of the graphical
models. A remarkable feature of the Gaussian graphical model with latent vari-
ables is that although the underlying the true precision matrix is sparse indicat-
ing small number of connected vertices in the corresponding graph, latent vari-
ables generally cause a non-sparse observable precision matrix of the variables


