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Abstract. This paper focuses on the long-time dynamics of a thermoelastic laminat-
ed beam modeled from the well-established Timoshenko theory. From mathematical
point of view, the study system consists of three hyperbolic motion equations coupled
with the parabolic equation governed by Fouriers law of heat conduction and, in con-
sequence, does not belong to one of the classical categories of PDE. We have proved
the well-posedness and exponential stability of the system. The well-posedness is giv-
en by Hille-Yosida theorem. For the exponential decay we applied the energy method
by introducing a Lyapunov functional.
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1 Introduction

The one dimensional thermoelastic system is given by

P — Aty +aby =0, (1.1)
cOr—abyy +auy=0. (1.2)

In this model, p denotes the mass density, a the elasticity coefficient, a the stress-
temperature and c the heat conductivity. The functions u and 60 are the displacement of
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the solid elastic material and the temperature difference. For existence and the asymp-
totic stability of the solutions we cite the pioneer work of Dafermos [1] where it is proven
that the temperature gradient and the specific entropy always converges to zero.

As a rule, the displacement also decays to zero as time goes to infinity. Several ef-
forts have shown asymptotic stability, specifically [2,3] and reference therein. In these
studies, the authors proved that the total thermoelastic energy decays to zero exponen-
tially as time goes to infinity for material subject to Dirichlets, Neumanns and also mixed
boundary conditions. The beam deflection when subjected to transverse displacement
u and rotation angle ¢ is mathematically described by the system developed by Timo-
shenko [4], which is given by two coupled differential equations

putt"'G(lP_ux)x:O/ (1.3)
Ip¢tt—G(lp—Mx)—Dlpxx:0. (14)

The coefficients p, I, and G are the mass per unit length, the polar moment of inertia
of a cross section and the shear modulus, respectively. D=EI where E is Youngs modulus
of elasticity and I is the moment of inertia of a cross section.

The model for two identical Timoshenko beams, taking into account that an adhesive
of the small thickness is bonding the two layers producing the structural damping due
to the interfacial slip, was proposed by Hansen and Spies [5, 6] and is given by

pus+G(P—uy)r =0, x€(0,1), t>0, (1.5)
I,(3S—4)ut—G(p—1ux) —D(3S—1)xx =0, x€(0,1), t>0, (1.6)
3L,Su+3G (p—uy)+46S+47S—3DS, =0,  x€(0,1), >0, (1.7)

where u(x,t) represents the transverse displacement, ¢(x,t) is the rotation angle dis-
placement and S(x, t) is proportional to the amount of slip along the interface. The system
(1.5)-(1.7) describes the dynamics of transverse displacement, rotation angle and interfa-
cial slip, respectively. The coefficients 6 and y are the adhesive stiffness and adhesive
damping of the beams.

Regarding the stabilization of the system (1.5)-(1.7), we mention [7-10] and references
therein. In [9], it is proven that the structural damping 4y S; created by the interfacial s-
lip alone is not enough to stabilize the system (1.5)-(1.7) exponentially to its equilibrium
state. Reference [10] showed that when the frictional damping is present in all compo-
nents,

pup+G(p—uy)y+au; =0, (1.8)

I, (3St—u) —G(Pp—1x) =D (3Sxx —Pxx) +B(3S 1) =0, (1.9)
31,S143G (P —uy)+46S—3DS,+475: =0, (1.10)



