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Abstract

We study the recovery conditions of weighted mixed `2/`p minimization for block s-

parse signal reconstruction from compressed measurements when partial block support

information is available. We show theoretically that the extended block restricted isom-

etry property can ensure robust recovery when the data fidelity constraint is expressed

in terms of an `q norm of the residual error, thus establishing a setting wherein we are

not restricted to Gaussian measurement noise. We illustrate the results with a series of

numerical experiments.
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1. Introduction

Recovering an unknown signal from significantly fewer measurements is a fundamental as-

pect in computational sciences today. The key ingredient here is the sparsity of the unknown

signal – a realisation that has led to the theory of compressed sensing (CS) [1–3] through which

successful recovery of high dimensional (approximately) sparse signals is now possible at a rate

significantly lower than the Nyquist sampling rate. This allows an unknown signal x ∈ RN

to be successfully recovered via y = Ax+ e ∈ Rm,m � N, if x is (approximately) sparse in

some transform domain, and the noise e satisfies ‖e‖2 ≤ ε, for ε > 0. In short, recovery is

possible if the measurement matrix A ∈ Rm×N satisfies the restricted isometry property (RIP):

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 for any k-sparse x and some δk ∈ [0, 1] [1]. Under such

conditions, stable and robust recovery is guaranteed via the `1 minimization

min
z
‖z‖1 s.t. ‖y −Az‖2 ≤ ε. (1.1)

The question of how few measurements one might use was answered when it was shown that

Gaussian random matrices satisfy the RIP with high probability, provided that m ≥ Ck log(eN/
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k), for some C > 0 [4]. Today, an interesting challenge lies in customizing the recovery process

to take into account prior knowledge about e.g. signal structure and properties of noise present.

However, so far no unified framework has been proposed for this purpose - something we aim

to do in this paper.

In addition to pure sparsity, nonzero signal components may appear in clustered regions,

either naturally or as a result of some sparsifying transformation. These ’blocks’ occur in many

real worlds scenarios such as genetics and image processing [5–7]. Incorporating the block

structure into a CS recovery algorithm provides some immediate benefits in terms of reduction

of the number of required measurements for stable recovery, and a more robust recovery via

better differentiation of recovery artifacts [8].

Let x[i] define the ith block of a vector x ∈ RN over the block index set I = {d1, . . . , dn}
such that N =

∑n
i=1 di, and let the blocks be formed sequentially with length di of block i

x = (x1 · · ·xd1︸ ︷︷ ︸
xT [1]

xd1+1 · · ·xd1+d2︸ ︷︷ ︸
xT [2]

· · ·xN−dn+1 · · ·xN︸ ︷︷ ︸
xT [n]

)T . (1.2)

We define a signal x ∈ RN as block k-sparse over I if x[i] is nonzero for at most k indices i,

i.e., if ‖x‖0,I ≤ k, where ‖x‖0,I =
∑n
i=1 I(‖x[i]‖2 > 0). The block structure of the unknown

signal can be incorporated into the recovery process via a mixed minimization scheme using

e.g. the `2/`1 norm [9], or its nonconvex generalization, the `2/`p norm (0 < p ≤ 1) [5, 6],

where the mixed `2/`p norm is defined as ‖x‖2,p = (
∑n
i=1‖x[i]‖p2)1/p. The sufficient condition

for the existence of an exact solution to (1.1) provided by the RIP has been generalized into

the block sparse setting, thus guaranteeing exact and robust recovery of block sparse signals

via both mixed `2/`1 and `2/`p minimization [5, 9].

It may furthermore be possible to draw an estimate of the support of the largest block

components of a signal, e.g., when working with recursive reconstruction of time sequences of

sparse spatial signals where support estimates of previous instances can be used to estimate the

present ones [10–12]. Given a support estimate T̃ ⊂ {1, . . . , N}, one can incorporate the prior

support information via a weighted minimization approach with weights ωi = ω ∈ [0, 1] when

i ∈ T̃ and ωi = 1 otherwise [10].

From a Bayesian point of view, the `2 fidelity constraint in (1.1) corresponds to a conditional

loglikelihood associated with Gaussian white noise. The measurement noise might however

not be Gaussian. This motivates an extension of the existing CS theory to one with a data

fidelity constraint expressed in the `q norm of the residual error. The case with k-sparse

signals has been studied in [4, 13, 14] for q ≥ 2 and in [15] for 0 ≤ q < 2. A sufficient

condition for sparse recovery from noisy measurements with non-Gaussian noise is given by an

extension of the RIP [13], wherein the measurement matrix A ∈ Rm×N is said to satisfy the

extended restricted isometry property (RIPq,2) of order k if there exists a δk ∈ (0, 1) such that

µ2
q,2(1− δk)‖x‖22 ≤ ‖Ax‖2q ≤ µ2

q,2(1 + δk)‖x‖22, for any k-sparse vector x and some µq,2 > 0. A

natural question is whether one can find an optimal `q constraint for specific noise types. We

expand the existing results to investigate possible q-optimality for block-sparse signals with

partially known block support.

Consider an arbitrary signal x ∈ RN , defined as (1.2), with xk as its best block k-sparse

approximation. Let T0 be the block support of xk, where T0 ⊂ {1, . . . , n} and |T0| ≤ k. Let

T̃ ⊂ {1, . . . , n} be the block support estimate, where |T̃ | = ρk and 0 ≤ ρ ≤ a for some a > 1

and |T̃ ∩T0| = αρk (for interpretation of ρ and α see [10]). We define the weighted mixed `2/`p


