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Abstract. In this paper, we present a model for grown-in point defects inside indium
antimonide crystals grown by the Czochralski (CZ) technique. Our model is similar to
the ones used for silicon crystal, which includes the Fickian diffusion and a recombina-
tion mechanism. This type of models is used for the first time to analyze grown-in point
defects in indium antimonide crystals. The temperature solution and the advance of the
melt-crystal interface, which determines the time-dependent domain of the model, are
based on a recently derived perturbation model. We propose a finite difference method
which takes into account the moving interface. We study the effect of thermal flux on
the point defect patterns during and at the end of the growth process. Our results show
that the concentration of excessive point defects is positively correlated to the heat flux
in the system.
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1 Introduction

Indium antimonide (InSb), a compound semiconductor which is useful as an infrared
detector and filter, has attracted considerable attention over the last several years. Due to
thermal fluctuation and/or presence of impurities during the crystal growth process, the
structure of the crystal posses various imperfections, known as defects. Among various
types of defect, the basic ones are the point defects (interstitial, vacancy, interstitialcy).

Most of the previous work on point defects has been done for silicon crystals. Taking
convective flux, diffusive flux and recombination of interstitials and vacancies into account,
Voronkov [21,22] proposed a model of micro-defect formation in silicon and authors in [8,
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13–15] followed the similar models. While many researchers [4,5,11,12,18] have improved
the model by adding the reduced heat transfer effects, Sinno et al. [17] have further
added the effect of nucleation of excess vacancies or excess interstitials. While the general
principle is similar for different types of crystals, material properties may have an impact
on the formation and dynamics of point defects.

In this paper we extend the Voronkov model [22] to indium antimonide crystal grown by
the CZ technique. The main objective of the paper is to compute the distribution of point
defects and their supersaturation values by solving the model equations numerically. We
will exam the effect of controlling parameters such as the heat fluxes at the gas/crystal and
melt/crystal interfaces on the point defects distribution. The rest of the paper proceeds
as follows. We present our basic model for two types of point defects in Section 2. A
numerical method for solving the model equations is proposed in Section 3. Numerical
results for the basic model are given in Section 4 and we finish the paper by a short
discussion in Section 5. A generalization of the basic model is given in the Appendix.

2 Basic model

To simplify the computation, we neglect the impurity atoms and interstitialcy defects.
Furthermore, we consider only neutral species of point defects and neglect charged species
and focus on the distribution of two types of point defects, namely interstitial and vacancy.
Taking convective flux, diffusive flux as a Fickian diffusion and recombination reaction
between interstitial and vacancy into account, mathematical model governing the point
defects is of the reaction-diffusion type, written as

∂CI

∂t
= ∇ · (DI∇CI − ~fpCI) − RIV (CICV − Ce

IC
e
V ), (2.1)

∂CV

∂t
= ∇ · (DV ∇CV − ~fpCV ) − RIV (CICV − Ce

IC
e
V ), (2.2)

where CI and CV are volume concentrations of interstitial and vacancy point defects,
respectively. RIV is the temperature dependent reaction rate, which determines how fast
the recombination is taking place. It can be expressed as a function of the mobility of
point defects and a free energy activation barrier as

RIV = 4πar(DI(T ) + DV (T ))e
−

∆GIV
kBT ,

where ar is an effective capture radius, kB , the Boltzmann’s constant and ∆GIV , the free
energy barrier against recombination of interstitial and vacancy. Ce

j , j = I, V are the
equilibria of Cj for a given temperature T, given by the formula
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