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Abstract. In this paper, we describe a modified RATTLE (M-RATTLE) method for
rigid body dynamics directly in Cartesian coordinates. The M-RATTLE method in-
troduces a new way of resetting the coordinates to satisfy the constraints at each step,
which is designed for the rigid body dynamics calculations in the Cartesian coordi-
nates. M-RATTLE is algebraically equivalent to the RATTLE method and the cost of
performing rigid body dynamics by M-RATTLE is independent of the number of con-
straints. The interaction forces between atoms belonging to the same rigid molecule do
not need to be computed and explicit expressions of the constraints of internal degrees
of freedom are unnecessary. The performance and sampling results of the proposed
method are compared with those of the symplectic splitting method for an isolated
rigid benz molecule and for a cluster of twenty-seven benz molecules.
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1 Introduction

There has been great interest in developing stable and efficient algorithms for rigid body
dynamics, see, e.g., [1–3]. There are three formulations for rigid body dynamics: the rota-
tion matrix formulation, the formulation based on the Euler equations, and the Cartesian
formulation [19]. During the past three decades, a number of algorithms have been devel-
oped under these formulations, which include the Gear predictor-corrector algorithm [8],
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the linear constraints method [5], the symplectic splitting methods [6,26,29], the symplec-
tic quaternion scheme [22], the leapfrog scheme [25], the symplectic constrained rotation
matrix integration [15, 21] and the algorithm proposed by Neto et al. [24].

For rigid molecules whose potentials are expressed in terms of interactions between
atomic sites, it is natural to consider calculating the rigid body dynamics directly in Carte-
sian coordinates. The Cartesian formulation is believed to have good stability property,
which can also avoid many complications of Euler equations and quaternions. In the
Cartesian formulation, the dynamics are determined by integrating the equations of mo-
tion of each atom, subject to the constraints that make the molecules rigid (constraining
all internal degrees of freedom). The equations of motion of constrained dynamics are







MẌ(t)=−∂U(X(t))

∂X
− ∂g(X(t))

∂X

T

λ,

g(X(t))=0,

(1.1)

where M=diag{m1,m1,m1,··· ,mN,mN ,mN} is the 3N×3N mass matrix, N is the number
of atoms, mi is the mass of atom i, X is the coordinate of all atoms, U(X) is the potential, g
is the m-dimensional vector of constraints, λ is the m vector of Lagrange multipliers, and
m is the number of constraints. The underlying system of ordinary differential equations,

Ẍ =(I−M−1BT(BM−1BT)−1B)M−1F−M−1BT(BM−1BT)−1 dB

dt
Ẋ, (1.2)

is equivalent to (1.1) provided that the matrix BM−1BT is invertible, where B=∂g(X)/∂X
and F = −∂U(X)/∂X. If the initial values X(0) and Ẋ(0) satisfy the constraints, then
solutions of (1.2) will continue to satisfy the constraints. In practice, we can discretize
(1.2) directly, but the numerical error leads to drifts of the constraints. This is why we
prefer SHAKE or RATTLE which are direct discretizations of the equations (1.1).

In [27], Rychaert et al. proposed SHAKE discretization for (1.1) based on the leap-frog
Verlet scheme,















MVn+1/2 = MVn−1/2+hFn−hBT
n λn,

Xn+1 =Xn+hVn+1/2,

g(Xn+1)=0,

(1.3)

where Fn=−∂U(Xn)/∂X and Bn=∂g(Xn)/∂X, h is the size of the time-step, and {Xn,Vn}
are the coordinates and velocities of all atoms at step n. An alternative velocity-level
formulation, RATTLE, was proposed by Andersen [1]:



































MVn+1/2 = MVn+hFn/2−hBn
Tλn/2,

Xn+1 =Xn+hVn+1/2,

g(Xn+1)=0,

MVn+1 = MVn+1/2+hFn+1/2−hBn+1
Tλv

n+1/2,

Bn+1Vn+1 =0.

(1.4)


