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Abstract. We consider the Thomas-Fermi-von Weizsacker energy functional, with the
Wang-Teter correction, and present an efficient real space method for Orbital-Free Den-
sity Functional Theory. It is proved that the energy minimizer satisfies a second order
quasilinear elliptic equation, even at the points where the electron density vanishes.
This information is used to construct an efficient energy minimization method for
the resulting constrained problem, based on the truncated Newton method for un-
constrained optimization. The Wang-Teter kernel is analyzed, and its behavior in real
space at short and far distances is determined. A second order accurate discretization
of the energy is obtained using finite differences. The efficiency and accuracy of the
method is illustrated with numerical simulations in an Aluminium FCC lattice.
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1 Introduction

All material properties in a solid derive from the interactions between its constituent
atoms. A full description of such interactions requires the solution of Schrödinger’s equa-
tion in an ambient space of dimension 3N, where N is the number of particles. In the
Born-Oppenheimer approximation the positions of the nuclei of the atoms are fixed, so
N represents the total number of electrons.

It was first realized by Thomas [1] and Fermi [2] that the electronic structure of solids
in their ground state could be fully understood in terms of the electron density alone, ρ.
This fact, which gave origin to Density-Functional Theory (DFT), was later formalized

∗Corresponding author. Email address: cgarcia@math.ucsb.edu (C. J. Garcı́a-Cervera)

http://www.global-sci.com/ 334 c©2007 Global-Science Press



C. J. Garcı́a-Cervera / Commun. Comput. Phys., 2 (2007), pp. 334-357 335

by Hohenberg and Kohn [3, 4]. In [3] it was proved that there exists a functional of the
density F[ρ], such that the ground state energy associated to an external potential v can
be obtained by minimizing the energy

E[ρ]= F[ρ]+
∫

Ω
v(x)ρ(x)dx, (1.1)

where Ω may be a bounded domain, a periodic cell, or the whole space. The exact form
of F[ρ], however, is not known. Kohn and Sham [5] presented an approximation scheme
for F[ρ], and wrote the energy as

E[ρ]= Fs [ρ]+FH [ρ]+FXC[ρ]+
∫

Ω
v(x)ρ(x)dx, (1.2)

where Fs[ρ] is the exact kinetic energy of a system of non-interacting electrons with den-
sity ρ. The other contributions to the energy in (1.2) are Hartree, exchange and correla-
tion, and external potential energies, respectively.

The Hartree energy describes the Coulombic interactions between electrons:

FH[ρ]=
1

2

∫

Ω

∫

Ω

ρ(x)ρ(y)

|x−y| dxdy=
1

2

∫

Ω
ρKH∗ρ, (1.3)

where we have defined KH(x)= |x|−1.
The exchange and correlation energy, FXC[ρ], introduces corrections to the energy that

derive from using the non-interacting electron approximation for the kinetic and Hartree
energies. Although the expression for the total energy in (1.2) is exact, FXC[ρ] is unknown.
Here we approximate FXC[ρ] using the local density approximation (LDA) [4, 5]:

FXC[ρ]=
∫

Ω
f (ρ), (1.4)

where f (ρ) is given in (2.1) below.
The last term in energy (1.2) represents the effect of an external potential. In what

follows we consider ρ to be the density of the valence electrons only. The core electrons
and the nuclei are treated as a unit which interacts with the valence electrons through the
pseudopotential v(x).

The exact computation of the Kohn-Sham kinetic energy functional requires the com-
putation of the N non-interacting electron orbitals, which is equivalent to solving a sys-
tem of N coupled Schrödinger equations in R

3. In the spirit of the Thomas-Fermi ap-
proach, it is desirable to approximate the kinetic energy by a functional of the density
alone, free of orbitals. Several such approximations have been proposed in what is called
Orbital-Free Density-Functional Theory (OFDFT) [1, 2, 6–10]. We consider the Thomas-
Fermi-von Weizsacker kinetic energy functional, with the additional correction of Wang
and Teter [7]:

Fs[ρ]=
1

8

∫

Ω

|∇ρ|2
ρ

+CTF

∫

Ω
ρ5/3+FWT[ρ]. (1.5)


